Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for biosensing. However, SERS analysis has several concerns: the signal is limited by a number of molecules and the area of the plasmonic substrate in the laser hotspot, and quantitative analysis in a low-volume droplet is confusing due to the change of concentration during quick drying. The usage of hollow-core microstructured optical fibers (HC-MOFs) is thought to be an effective way to improve SERS sensitivity and limit of detection through the effective irradiation of a small sample volume filling the fiber capillaries.
View Article and Find Full Text PDFFunctional nanocoatings of hollow-core microstructured optical fibers (HC-MOFs) have extended the domain of their applications to biosensing and photochemistry. However, novel modalities typically come with increased optical losses since a significant surface roughness of functional layers gives rise to additional light scattering, restricting the performance of functionalization. Here, the technique that enables a biocompatible and removable nanocoating of HC-MOFs with low surface roughness is presented.
View Article and Find Full Text PDFFunctional nanocoatings have allowed hollow-core microstructured optical fibers (HC-MOFs) to be introduced into biosensing and photochemistry applications. However, common film characterization tools cannot evaluate the coating performance in situ. Here we report the all-optical noncontact characterization of the HC-MOF coating in real time.
View Article and Find Full Text PDFA sensitive optical sensor based on hollow core microstructure optical fibers modified with deep eutectic solvent was produced for the first time. An easy procedure for the modification of hollow-core microstructure optical fibers with deep eutectic solvent was developed. Deep eutectic solvents based on natural monoterpenoids and fatty acids were investigated for glass surface modification.
View Article and Find Full Text PDFThe state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte's refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS).
View Article and Find Full Text PDFLimited operating bandwidth originated from strong absorption of glass materials in the infrared (IR) spectral region has hindered the potential applications of microstructured optical waveguide (MOW)-based sensors. Here, we demonstrate multimode waveguide regime up to 6.5 µm for the hollow-core (HC) MOWs drawn from borosilicate soft glass.
View Article and Find Full Text PDFMaterials (Basel)
February 2020
Microstructured optical fiber-based sensors (MOF) have been widely developed finding numerous applications in various fields of photonics, biotechnology, and medicine. High sensitivity to the refractive index variation, arising from the strong interaction between a guided mode and an analyte in the test, makes MOF-based sensors ideal candidates for chemical and biochemical analysis of solutions with small volume and low concentration. Here, we review the modern techniques used for the modification of the fiber's structure, which leads to an enhanced detection sensitivity, as well as the surface functionalization processes used for selective adsorption of target molecules.
View Article and Find Full Text PDFMicrostructured optical waveguides (MOW) are of great interest for chemical and biological sensing. Due to the high overlap between a guiding light mode and an analyte filling of one or several fiber capillaries, such systems are able to provide strong sensitivity with respect to variations in the refractive index and the thickness of filling materials. Here, we introduce a novel type of functionalized MOWs whose capillaries are coated by a layer-by-layer (LBL) approach, enabling the alternate deposition of silica particles (SiO) at different diameters-300 nm, 420 nm, and 900 nm-and layers of poly(diallyldimethylammonium chloride) (PDDA).
View Article and Find Full Text PDFOptical fibers are widely used in bioimaging systems as flexible endoscopes that are capable of low-invasive penetration inside hollow tissue cavities. Here, we report on the technique that allows magnetic resonance imaging (MRI) of hollow-core microstructured fibers (HC-MFs), which paves the way for combing MRI and optical bioimaging. Our approach is based on layer-by-layer assembly of oppositely charged polyelectrolytes and magnetite nanoparticles on the inner core surface of HC-MFs.
View Article and Find Full Text PDFFiber delivery of ultrashort pulses is important for multiphoton endoscopy. A chirped photonic crystal fiber (CPCF) is first characterized for its transmission bandwidth, propagation loss, and dispersion properties. Its extremely low dispersion (~150 fs(2)/m) enables the delivery of sub-30 fs pulses through a ~1 m-long CPCF.
View Article and Find Full Text PDFDelivery of sub-20-fs pulses through 80 cm of a chirped photonic crystal fiber with chirped-mirror precompensation is experimentally demonstrated. The pulses out of the fiber are within 15% of the bandwidth limit and exhibit a pulse energy of 1 nJ. Peak powers amount to 50 kW directly out of the fiber.
View Article and Find Full Text PDF