Publications by authors named "Julia Sanz-Aparicio"

Article Synopsis
  • Dihydromyricetin has great pharmaceutical potential but is limited by poor solubility and stability, prompting the synthesis of glucosides to enhance its bioavailability.
  • Through the use of a specific sucrose phosphorylase variant, researchers developed three monoglucosides, with dihydromyricetin 4'--α-D-glucopyranoside being the most prevalent.
  • Acylation of this monoglucoside created three novel derivatives, and studies showed that modifications in their structure impacted both water solubility and antioxidant activity.
View Article and Find Full Text PDF

Fungal unspecific peroxygenases (UPOs) are gaining momentum in synthetic chemistry. Of special interest is the UPO from (UPO), which shows an exclusive repertoire of oxyfunctionalizations, including the terminal hydroxylation of alkanes, the α-oxidation of fatty acids and the C-C cleavage of corticosteroids. However, the lack of heterologous expression systems to perform directed evolution has impeded its engineering for practical applications.

View Article and Find Full Text PDF

Invertases, or β-fructofuranosidases, are metabolic enzymes widely distributed among plants and microorganisms that hydrolyze sucrose and release fructose from various substrates. Invertase was one of the earliest discovered enzymes, first investigated in the mid-nineteenth century, becoming a classical model used in the primary biochemical studies on protein synthesis, activity, and the secretion of glycoproteins. However, it was not until 20 years ago that a member of this family of enzymes was structurally characterized, showing a bimodular arrangement with a β-propeller catalytic domain, and a β-sandwich domain with unknown function.

View Article and Find Full Text PDF

Metal complexes introduced into protein scaffolds can generate versatile biomimetic catalysts endowed with a variety of catalytic properties. Here, we synthesized and covalently bound a bipyridinyl derivative to the active centre of an esterase to generate a biomimetic catalyst that shows catecholase activity and enantioselective catalytic oxidation of (+)-catechin.

View Article and Find Full Text PDF
Article Synopsis
  • Protein hydrolysates from marine by-products are nutritious but often have a fishy odor due to trimethylamine (TMA), which can be converted to odorless trimethylamine-oxide (TMAO) using engineered enzymes.
  • Researchers improved the thermostability of the flavin-containing monooxygenase (FMO) mFMO through the PROSS algorithm, resulting in several mutant variants that performed better at higher temperatures.
  • The most successful variant, mFMO_20, showed enhanced ability to reduce TMA levels in salmon protein hydrolysate at industrial temperatures, indicating its potential for use in marine biorefineries.
View Article and Find Full Text PDF

The Inulinase from Kluyveromyces marxianus ISO3 (Inu-ISO3) is an enzyme able to hydrolyze linear fructans such as chicory inulin as well as branched fructans like agavin. This enzyme was cloned and expressed in Komagataella pastoris to study the role of selected aromatic and polar residues in the catalytic pocket by Alanine scanning. Molecular dynamics (MD) simulations and enzyme kinetics analysis were performed to study the functional consequences of these amino acid substitutions.

View Article and Find Full Text PDF

Metagenomics offers the possibility to screen for versatile biocatalysts. In this study, the microbial community of the Sorghum bicolor rhizosphere was spiked with technical cashew nut shell liquid, and after incubation, the environmental DNA (eDNA) was extracted and subsequently used to build a metagenomic library. We report the biochemical features and crystal structure of a novel esterase from the family IV, EH, retrieved from an uncultured sphingomonad after a functional screen in tributyrin agar plates.

View Article and Find Full Text PDF

The hydroxylation of fatty acids is an appealing reaction in synthetic chemistry, although the lack of selective catalysts hampers its industrial implementation. In this study, we have engineered a highly regioselective fungal peroxygenase for the ω-1 hydroxylation of fatty acids with quenched stepwise over-oxidation. One single mutation near the Phe catalytic tripod narrowed the heme cavity, promoting a dramatic shift toward subterminal hydroxylation with a drop in the over-oxidation activity.

View Article and Find Full Text PDF

β-fructofuranosidase is a highly glycosylated enzyme with broad substrate specificity that catalyzes the synthesis of 6-kestose and a mixture of the three series of fructooligosaccharides (FOS), fructosylating a variety of carbohydrates and other molecules as alditols. We report here its three-dimensional structure, showing the expected bimodular arrangement and also a unique long elongation at its N-terminus containing extensive O-glycosylation sites that form a peculiar arrangement with a protruding loop within the dimer. This region is not required for activity but could provide a molecular tool to target the dimeric protein to its receptor cellular compartment in the yeast.

View Article and Find Full Text PDF

Chitin is the most widespread amino renewable carbohydrate polymer in nature and the second most abundant polysaccharide. Therefore, chitin and chitinolytic enzymes are becoming more importance for biotechnological applications in food, health and agricultural fields, the design of effective enzymes being a paramount issue. We report the crystal structure of the plant-type -chitinase Chit33 from and its D165A/E167A-Chit33-(NAG) complex, which showed an extended catalytic cleft with six binding subsites lined with many polar interactions.

View Article and Find Full Text PDF

Family VIII esterases present similarities to class C β-lactamases, which show nucleophilic serines located at the S-X-X-K motif instead of the G-X-S-X-G or G-D-S-(L) motif shown by other carboxylesterase families. Here, we report the crystal structure of a novel family VIII (subfamily VIII. I) esterase (EH ; denaturing temperature, 52.

View Article and Find Full Text PDF

Many microorganisms feed on the tissue and recalcitrant bone materials from dead animals, however little is known about the collaborative effort and characteristics of their enzymes. In this study, microbial metagenomes from symbionts of the marine bone-dwelling worm , and from microbial biofilms growing on experimentally deployed bone surfaces were screened for specialized bone-degrading enzymes. A total of 2,043 taxonomically (closest match within 40 phyla) and functionally (1 proteolytic and 9 glycohydrolytic activities) diverse and non-redundant sequences (median pairwise identity of 23.

View Article and Find Full Text PDF

Chitinases degrade chitin into low molecular weight chitooligomers, which have a broad range of industrial, agricultural, and medical functions. Understanding the relationship between the diverse characteristics of chitinases and their functions is necessary for the improvement of functional enzymes that meet specific requirements. We report here a full crystallographic analysis of three complexes obtained from the chitinase Chit42 from , which represent different states along the enzymatic mechanism.

View Article and Find Full Text PDF

Endoxylanases active under extreme conditions of temperature and alkalinity can replace the use of highly pollutant chemicals in the pulp and paper industry. Searching for enzymes with these properties, we carried out a comprehensive bioinformatics study of the GH10 family. The phylogenetic analysis allowed the construction of a radial cladogram in which protein sequences putatively ascribed as thermophilic and alkaliphilic appeared grouped in a well-defined region of the cladogram, designated TAK Cluster.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on enzymes with high substrate ambiguity and their unique flexibility at large active sites, which challenges their ability to be stereospecific.
  • Researchers specifically targeted a serine ester hydrolase (EH) with 71 substrates but only 50% stereospecificity to investigate evolutionary factors that influence this ambiguity and specificity.
  • The mutations at sequence position I244 led to one mutation maintaining a wide substrate range while the other improved stereospecificity significantly, suggesting that certain amino acids play a critical role in enzyme evolution that could benefit biotechnological applications.
View Article and Find Full Text PDF

The yeast diadenosine and diphosphoinositol polyphosphate phosphohydrolase DDP1 is a Nudix enzyme with pyrophosphatase activity on diphosphoinositides, dinucleotides, and polyphosphates. These substrates bind to diverse protein targets and participate in signaling and metabolism, being essential for energy and phosphate homeostasis, ATPase pump regulation, or protein phosphorylation. An exhaustive structural study of DDP1 in complex with multiple ligands related to its three diverse substrate classes is reported.

View Article and Find Full Text PDF

The β-fructofuranosidase from Schwanniomyces occidentalis (Ffase) is a useful biotechnological tool for the fructosylation of different acceptors to produce fructooligosaccharides (FOS) and fructo-conjugates. In this work, the structural determinants of Ffase involved in the transfructosylating reaction of the alditols mannitol and erythritol have been studied in detail. Complexes with fructosyl-erythritol or sucrose were analyzed by crystallography and the effect of mutational changes in positions Gln-176, Gln-228, and Asn-254 studied to explore their role in modulating this biocatalytic process.

View Article and Find Full Text PDF

Owing to their outstanding catalytic properties, enzymes represent powerful tools for carrying out a wide range of (bio)chemical transformations with high proficiency. In this context, enzymes with high biocatalytic promiscuity are somewhat neglected. Here, we demonstrate that a meticulous modification of a synthetic shell that surrounds an immobilized enzyme possessing broad substrate specificity allows the resulting nanobiocatalyst to be endowed with enantioselective properties while maintaining a high level of substrate promiscuity.

View Article and Find Full Text PDF

Reducing-end xylose-releasing exo-oligoxylanases (Rex) are GH8 enzymes that depolymerize xylooligosaccharides complementing xylan degradation by endoxylanases in an exo manner. We have studied Paenibacillus barcinonensis Rex8A and showed the release of xylose from xylooligomers decorated with methylglucuronic acid (UXOS) or with arabinose (AXOS). This gives the enzyme a distinctive trait among known Rex, which show activity only on linear xylooligosaccharides.

View Article and Find Full Text PDF

BglX is a heretofore uncharacterized periplasmic glycoside hydrolase (GH) of the human pathogen . X-ray analysis identifies it as a protein homodimer. The two active sites of the homodimer comprise catalytic residues provided by each monomer.

View Article and Find Full Text PDF

Lactose intolerance is a common digestive disorder that affects a large proportion of the adult human population. The severity of the symptoms is highly variable, depending on the susceptibility to the sugar and the amount digested. For that reason, enzymes that can be used for the production of lactose-free milk and milk derivatives have acquired singular biotechnological importance.

View Article and Find Full Text PDF

Enzymatic glycosylation of polyphenols is a tool to improve their physicochemical properties and bioavailability. On the other hand, glycosidic enzymes can be inhibited by phenolic compounds. In this work, we studied the specificity of various phenolics (hydroquinone, hydroxytyrosol, epigallocatechin gallate, catechol and p-nitrophenol) as fructosyl acceptors or inhibitors of the β-fructofuranosidase from Xanthophyllomyces dendrorhous (pXd-INV).

View Article and Find Full Text PDF

The synthesis of multivalent pyrrolidine iminosugars via CuAAC click reaction between different pyrrolidine-azide derivatives and tri- or hexavalent alkynyl scaffolds is reported. The new multimeric compounds, together with the monomeric reference, were evaluated as inhibitors against two homologous GH1 β-glucosidases (BglA and BglB from Paenibacillus polymyxa). The multivalent inhibitors containing an aromatic moiety in the linker between the pyrrolidine and the scaffold inhibited the octameric BglA (µM range) but did not show affinity against the monomeric BglB, despite the similarity between the active site of both enzymes.

View Article and Find Full Text PDF

Because of their minimal requirements, substrate promiscuity and product selectivity, fungal peroxygenases are now considered to be the jewel in the crown of C-H oxyfunctionalization biocatalysts. In this work, the crystal structure of the first laboratory-evolved peroxygenase expressed by yeast was determined at a resolution of 1.5 Å.

View Article and Find Full Text PDF

The β-fructofuranosidase Ffase from the yeast Schwanniomyces occidentalis produces potential prebiotic fructooligosaccharides with health-promoting properties, making it of biotechnological interest. Ffase is one of the highest and more selective known producers of 6-kestose by transfructosylation of sucrose. In this work, production of 6-kestose was simplified by directly using cultures of S.

View Article and Find Full Text PDF