Publications by authors named "Julia S Westman"

Intestinal inflammation is the underlying basis of colitis and the inflammatory bowel diseases. These syndromes originate from genetic and environmental factors that remain to be fully identified. Infections are possible disease triggers, including recurrent human food-poisoning by the common foodborne pathogen Typhimurium (), which in laboratory mice causes progressive intestinal inflammation leading to an enduring colitis.

View Article and Find Full Text PDF

This update on the P1PK blood group system (Hellberg Å, Westman JS, Thuresson B, Olsson ML. P1PK: the blood group system that changed its name and expanded. Immunohematology 2013;29:25-33) provides recent findings concerning the P1PK blood group system that have both challenged and confirmed old theories.

View Article and Find Full Text PDF

The main change that has occurred in the GLOB blood group system since the GLOB review published in this journal in 2013 is the addition of an antigen. The high-prevalence PX2 antigen, originally recognized as the x2 glycosphingolipid, is expressed on red blood cells of most individuals and is elevated in the rare PP1Pk-negative p blood group phenotype. P synthase, encoded by B3GALNT1, was found to elongate paragloboside to PX2 by adding the terminal β3GalNAc moiety.

View Article and Find Full Text PDF

Background: The P1 antigen was first described in 1927 and belongs to the P1PK histo-blood group system, together with P and NOR. The A4GALT-encoded 4-α-galactosyltransferase synthesizes these antigens and has been considered to extend glycolipids exclusively. However, contradicting studies have been published regarding the presence of P1 on human glycoproteins.

View Article and Find Full Text PDF

Sepsis is a life-threatening inflammatory syndrome accompanying a bloodstream infection. Frequently secondary to pathogenic bacterial infections, sepsis remains difficult to treat as a singular disease mechanism. We compared the pathogenesis of murine sepsis experimentally elicited by five bacterial pathogens and report similarities among host responses to Gram-negative Salmonella and E.

View Article and Find Full Text PDF

P1 and P are glycosphingolipid antigens synthesized by the -encoded α1,4-galactosyltransferase, using paragloboside and lactosylceramide as acceptor substrates, respectively. In addition to the compatibility aspects of these histo-blood group molecules, both constitute receptors for multiple microbes and toxins. Presence or absence of P1 antigen on erythrocytes determines the common P (P1P) and P (P1P) phenotypes.

View Article and Find Full Text PDF

The x2 glycosphingolipid is expressed on erythrocytes from individuals of all common blood group phenotypes and elevated on cells of the rare P/P1/P(k)-negative p blood group phenotype. Globoside or P antigen is synthesized by UDP-N-acetylgalactosamine:globotriaosyl-ceramide 3-β-N-acetylgalactosaminyltransferase encoded by B3GALNT1. It is the most abundant non-acid glycosphingolipid on erythrocytes and displays the same terminal disaccharide, GalNAcβ3Gal, as x2.

View Article and Find Full Text PDF

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry.

View Article and Find Full Text PDF

Background: Cells of the clinically important p histo-blood group phenotype lack P1, P(k) , and P glycosphingolipid antigens. All cases investigated so far are due to alterations in the 4-α-galactosyltransferase-encoding Exon 3 of A4GALT. Repetitive elements in the genome can mediate DNA rearrangements, the most abundant being the Alu family of repeats.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the null phenotypes of the P1PK and GLOB blood group systems, linked to mutations in A4GALT and B3GALNT1.
  • The researchers analyzed 84 samples to explore unknown alleles and confirm the P(1)/P(2) marker, revealing several genetic mutations through sequencing and flow cytometry.
  • The findings show significant genetic diversity within the P phenotypes, identifying new mutations and improving the understanding of how P alleles relate to specific blood group phenotypes.
View Article and Find Full Text PDF

The A4GALT locus encodes a glycosyltransferase that synthesizes the terminal Galα1-4Gal of the P(k) (Gb3/CD77) glycosphingolipid, important in transfusion medicine, obstetrics, and pathogen susceptibility. Critical nucleotide changes in A4GALT not only abolish P(k) formation but also another Galα1-4Gal-defined antigen, P1, which belongs to the only blood group system for which the responsible locus remains undefined. Since known A4GALT polymorphisms do not explain the P1-P(k)+ phenotype, P(2), we set out to elucidate the genetic basis of P(1)/P(2).

View Article and Find Full Text PDF