Publications by authors named "Julia S F Chu"

We report a quantum dot (Qdot) nanobarcode-based microbead random array platform for accurate and reproducible gene expression profiling in a high-throughput and multiplexed format. Four different sizes of Qdots, with emissions at 525, 545, 565, and 585 nm are mixed with a polymer and coated onto the 8-mum-diameter magnetic microbeads to generate a nanobarcoded bead termed as QBeads. Twelve intensity levels for each of the four colors were used.

View Article and Find Full Text PDF

Fibrocystin/polyductin (FPC), the gene product of PKHD1, is responsible for autosomal recessive polycystic kidney disease (ARPKD). This disease is characterized by symmetrically large kidneys with ectasia of collecting ducts. In the kidney, FPC predominantly localizes to the apical domain of tubule cells, where it associates with the basal bodies/primary cilia; however, the functional role of this protein is still unknown.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, including vascular smooth muscle cells (SMCs), and have tremendous potential as a cell source for cardiovascular regeneration. We postulate that specific vascular environmental factors will promote MSC differentiation into SMCs. However, the effects of the vascular mechanical environment on MSCs have not been characterized.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor beta1 (TGF-beta) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-beta induced cell morphology change and an increase in actin fibers in MSCs.

View Article and Find Full Text PDF