() and transcription factors (TFs) have compensatory roles in repressing somatostatin (SST) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. and conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) and are positively regulated by and to drive IN morphological maturation; (2) and promote expression which specifies parvalbumin (PV) INs; (3) , and are candidate markers of immature PV hippocampal INs (HIN).
View Article and Find Full Text PDFStem cells are often transplanted with scaffolds for tissue regeneration; however, how the mechanical property of a scaffold modulates stem cell fate in vivo is not well understood. Here we investigated how matrix stiffness modulates stem cell differentiation in a model of vascular graft transplantation. Multipotent neural crest stem cells (NCSCs) were differentiated from induced pluripotent stem cells, embedded in the hydrogel on the outer surface of nanofibrous polymer grafts, and implanted into rat carotid arteries by anastomosis.
View Article and Find Full Text PDFIn this Letter, analysis of steady-state regulatory T (Treg) cell percentages from Il2ra enhancer deletion (EDEL) and wild-type (WT) mice revealed no differences between them (Extended Data Fig. 9d). This analysis included two mice whose genotypes were incorrectly assigned.
View Article and Find Full Text PDFThe majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied.
View Article and Find Full Text PDFBackground And Aim: Previous studies reporting on estimates of heritability of cardiovascular risk factors in Chinese are limited. This study aims to estimate the heritability of cardiovascular risk factors in relatives of residents who participated in the Taichung Community Health Study (TCHS) and Family Cohort (TCHS-FC) while controlling as many potential confounders as possible.
Methods: A total of 1564 study subjects from 494 families with members aged 12-91 years were enrolled from a random sample of participants of TCHS and their family members (TCHS-FC) from 2009 to 2012.
Tissue-specific stem cells can be coaxed or harvested for tissue regeneration. In this study, we identified and characterized a new type of stem cells from the synovial membrane of knee joint, named neural crest cell-like synovial stem cells (NCCL-SSCs). NCCL-SSCs showed the characteristics of neural crest stem cells: they expressed markers such as Sox10, Sox17 and S100β, were clonable, and could differentiate into neural lineages as well as mesenchymal lineages, although NCCL-SSCs were not derived from neural crest during the development.
View Article and Find Full Text PDFVascular smooth muscle cells (SMCs) are a major cell type involved in vascular remodeling. The various developmental origins of SMCs such as neural crest and mesoderm result in heterogeneity of SMCs, which plays an important role in the development of vascular remodeling and diseases. Upon vascular injury, SMCs are exposed to blood flow and subjected to fluid shear stress.
View Article and Find Full Text PDFIt is generally accepted that the de-differentiation of smooth muscle cells, from the contractile to the proliferative/synthetic phenotype, has an important role during vascular remodelling and diseases. Here we provide evidence that challenges this theory. We identify a new type of stem cell in the blood vessel wall, named multipotent vascular stem cells.
View Article and Find Full Text PDFNeural crest stem cells (NCSCs) are multipotent and play an important role during the development and tissue regeneration. However, the anisotropic effects of mechanical strain on NCSCs are not known. To investigate the anisotropic mechanosensing by NCSCs, NCSCs derived from induced pluripotent stem cells were cultured on micropatterned membranes, and subjected to cyclic uniaxial strain in the direction parallel or perpendicular to the microgrooves.
View Article and Find Full Text PDFBackground: Short stature is associated with increased risk of coronary heart disease (CHD); although the mechanisms for this relationship are unknown, shared genetic factors have been proposed. Subclinical atherosclerosis, measured by coronary artery calcification (CAC), is associated with CHD events and represents part of the biological continuum to overt CHD. Many molecular mechanisms of CAC development are shared with bone growth.
View Article and Find Full Text PDFHistone deacetylation and acetylation are catalyzed by histone deacetylase (HDAC) and histone acetyltransferase, respectively, which play important roles in the regulation of chromatin remodeling, gene expression, and cell functions. However, whether and how biophysical cues modulate HDAC activity and histone acetylation is not well understood. Here, we tested the hypothesis that microtopographic patterning and mechanical strain on the substrate regulate nuclear shape, HDAC activity, and histone acetylation.
View Article and Find Full Text PDFBone marrow mesenchymal stem cells (MSCs) are a valuable cell source for tissue engineering and regenerative medicine. Transforming growth factor β (TGF-β) can promote MSC differentiation into either smooth muscle cells (SMCs) or chondrogenic cells. Here we showed that the stiffness of cell adhesion substrates modulated these differential effects.
View Article and Find Full Text PDFWe report a quantum dot (Qdot) nanobarcode-based microbead random array platform for accurate and reproducible gene expression profiling in a high-throughput and multiplexed format. Four different sizes of Qdots, with emissions at 525, 545, 565, and 585 nm are mixed with a polymer and coated onto the 8-mum-diameter magnetic microbeads to generate a nanobarcoded bead termed as QBeads. Twelve intensity levels for each of the four colors were used.
View Article and Find Full Text PDFMol Biol Cell
September 2005
Fibrocystin/polyductin (FPC), the gene product of PKHD1, is responsible for autosomal recessive polycystic kidney disease (ARPKD). This disease is characterized by symmetrically large kidneys with ectasia of collecting ducts. In the kidney, FPC predominantly localizes to the apical domain of tubule cells, where it associates with the basal bodies/primary cilia; however, the functional role of this protein is still unknown.
View Article and Find Full Text PDFBone marrow mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, including vascular smooth muscle cells (SMCs), and have tremendous potential as a cell source for cardiovascular regeneration. We postulate that specific vascular environmental factors will promote MSC differentiation into SMCs. However, the effects of the vascular mechanical environment on MSCs have not been characterized.
View Article and Find Full Text PDFBone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor beta1 (TGF-beta) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-beta induced cell morphology change and an increase in actin fibers in MSCs.
View Article and Find Full Text PDFBackground: Electron beam computed tomography is an accurate, noninvasive method to detect and quantify coronary artery calcification (CAC), a marker of subclinical and clinical coronary artery atherosclerosis. CAC quantity predicts future coronary artery disease end points in asymptomatic adults, but measured risk factors explain less than half the variability in CAC quantity. Although several candidate genes for CAC have been identified, the relative importance of genetic influences on CAC quantity has not been assessed in asymptomatic adults in a community.
View Article and Find Full Text PDF