Episodic memory involves binding stimuli and/or events together in time and place. Furthermore, memories become more complex when new experiences influence the meaning of stimuli within the original memory. Thus collectively, complex episodic memory formation and maintenance involves processes such as encoding, storage, retrieval, updating and reconsolidation, which can be studied using animal models of higher-order conditioning.
View Article and Find Full Text PDFHundreds of genes are mutated in non-syndromic intellectual disability (ID) and autism spectrum disorder (ASD), with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF) mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold cause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures.
View Article and Find Full Text PDFThe retrosplenial cortex (RSC), which receives visuo-spatial sensory input and interacts with numerous hippocampal memory system structures, has a well-established role in contextual learning and memory. While it has been demonstrated that RSC function is necessary to learn to recognize a single environment that is directly paired with an aversive event, the role of the RSC in discriminating between two different contexts remains largely unknown. To address this, first order (Experiment 1) and higher order (Experiment 2) fear conditioning paradigms were conducted with sham and RSC-lesioned rats.
View Article and Find Full Text PDFThis protocol describes how to temporarily and remotely silence neuronal activity in discrete brain regions while animals are engaged in learning and memory tasks. The approach combines pharmacogenetics (Designer-Receptors-Exclusively-Activated-by-Designer-Drugs) with a behavioral paradigm (sensory preconditioning) that is designed to distinguish between different forms of learning. Specifically, viral-mediated delivery is used to express a genetically modified inhibitory G-protein coupled receptor (the Designer Receptor) into a discrete brain region in the rodent.
View Article and Find Full Text PDF