A novel N,N'-allyl-bridged bisimidazolium salt and a novel dinuclear Ag(I) and a Au(I) NHC complex are reported. Both metallacyclic complexes have a twisted structural shape due to the rigid allylic system and form two different isomers relating to the position of the double bonds. The allyl-group shows photoisomerisation, but no reactivity towards bases for the additional coordination of Pd(II).
View Article and Find Full Text PDFA series of rare earth complexes of the form Ln(L) supported by bidentate -aryloxide-NHC ligands are reported (L = 2-O-3,5-Bu-CH(1-C{N(CH)N(R)})); R = Pr, Bu, Mes; Ln = Ce, Sm, Eu). The cerium complexes cleanly and quantitatively insert carbon dioxide exclusively into all three cerium carbene bonds, forming Ce(L·CO). The insertion is reversible only for the mesityl-substituted complex Ce(L).
View Article and Find Full Text PDFThe formation of different conformers of dinuclear silver(i) and gold(i) 1,1'-(2-hydroxyethane-1,1-diyl) bridge-functionalized bis(NHC) complexes with various wing-tip substituents (R = methyl, isopropyl and mesityl) has been investigated using multinuclear NMR spectroscopy and SC-XRD as well as DFT calculations. The ratio of anti/syn isomers strongly depends both on wing-tip substituents and the metal. Moreover, the reaction temperature plays a significant role during the transmetallation process for the ratio of gold(i) conformers, which is further affected by purification procedures.
View Article and Find Full Text PDFExtensive chlorination of γ-AlO results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support.
View Article and Find Full Text PDFMost homogeneous catalysis relies on the design of metal complexes to trap and convert substrates or small molecules to value-added products. Organometallic lanthanide compounds first gave a tantalizing glimpse of their potential for catalytic C-H bond transformations with the selective cleavage of one C-H bond in methane by bis(permethylcyclopentadienyl)lanthanide methyl [(η(5) -C5 Me5 )2 Ln(CH3 )] complexes some 25 years ago. Since then, numerous metal complexes from across the periodic table have been shown to selectively activate hydrocarbon C-H bonds, but the challenges of closing catalytic cycles still remain; many f-block complexes show great potential in this important area of chemistry.
View Article and Find Full Text PDFThe synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (2a) and tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenethiophene)methane]iron(II) hexafluorophosphate (2b) were obtained by aminolysis of [Fe{N(SiMe3)2}2(THF)] with furan- and thiophene-functionalized bis(imidazolium) salts 1a and 1b in acetonitrile.
View Article and Find Full Text PDFCatecholamines play essential roles in several physiological processes in vertebrates as well as in invertebrates. While several studies have shown the presence of these substances in surface water invertebrates, their occurrence in groundwater fauna is unproven. In the present study, the presence of different catecholamines (i.
View Article and Find Full Text PDF