The alignment of organic semiconductors (OSCs) in the active layers of electronic devices can confer desirable properties, such as enhanced charge transport properties due to better ordering, charge transport anisotropy for reduced device cross-talk, and polarized light emission or absorption. The solution-based deposition of highly aligned small molecule OSCs has been widely demonstrated, but the alignment of polymeric OSCs in thin films deposited directly from solution has typically required surface templating or complex pre- or postdeposition processing. Therefore, single-step solution processing and the charge transport enhancement afforded by alignment continue to be attractive.
View Article and Find Full Text PDFUnlabelled: Organic bulk heterojunction (BHJ) solar cells are a promising alternative for future clean-energy applications. However, to become attractive for consumer applications, such as wearable, flexible, or semitransparent power-generating electronics, they need to be manufactured by high-throughput, low-cost, large-area-capable printing techniques. However, most research reported on BHJ solar cells is conducted using spin coating, a single batch fabrication method, thus limiting the reported results to the research lab.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
We describe a compact roll-to-roll (R2R) coater that is capable of tracking the crystallization process of semiconducting polymers during solution printing using X-ray scattering at synchrotron beamlines. An improved understanding of the morphology evolution during the solution-processing of organic semiconductor materials during R2R coating processes is necessary to bridge the gap between "lab" and "fab". The instrument consists of a vacuum chuck to hold the flexible plastic substrate uniformly flat for grazing incidence X-ray scattering.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2015
Unlabelled: With consumer electronics transitioning toward flexible products, there is a growing need for high-performance, mechanically robust, and inexpensive transparent conductors (TCs) for optoelectronic device integration. Herein, we report the scalable fabrication of highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (
Pedot: PSS) thin films via solution shearing. Specific control over deposition conditions allows for tunable phase separation and preferential PEDOT backbone alignment, resulting in record-high electrical conductivities of 4,600 ± 100 S/cm while maintaining high optical transparency.
Morphology control of solution coated solar cell materials presents a key challenge limiting their device performance and commercial viability. Here we present a new concept for controlling phase separation during solution printing using an all-polymer bulk heterojunction solar cell as a model system. The key aspect of our method lies in the design of fluid flow using a microstructured printing blade, on the basis of the hypothesis of flow-induced polymer crystallization.
View Article and Find Full Text PDFUnderstanding crystal polymorphism is a long-standing challenge relevant to many fields, such as pharmaceuticals, organic semiconductors, pigments, food, and explosives. Controlling polymorphism of organic semiconductors (OSCs) in thin films is particularly important given that such films form the active layer in most organic electronics devices and that dramatic changes in the electronic properties can be induced even by small changes in the molecular packing. However, there are very few polymorphic OSCs for which the structure-property relationships have been elucidated so far.
View Article and Find Full Text PDFA crystal's structure has significant impact on its resulting biological, physical, optical and electronic properties. In organic electronics, 6,13(bis-triisopropylsilylethynyl)pentacene (TIPS-pentacene), a small-molecule organic semiconductor, adopts metastable polymorphs possessing significantly faster charge transport than the equilibrium crystal when deposited using the solution-shearing method. Here, we use a combination of high-speed polarized optical microscopy, in situ microbeam grazing incidence wide-angle X-ray-scattering and molecular simulations to understand the mechanism behind formation of metastable TIPS-pentacene polymorphs.
View Article and Find Full Text PDFImproving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate.
View Article and Find Full Text PDF