The Pacinian corpuscle (PC) is a cutaneous mechanoreceptor sensitive to high-frequency vibrations (20-1000Hz). The PC is of importance due to its integral role in somatosensation and the critical need to understand PC function for haptic feedback system development. Previous theoretical and computational studies have modeled the physiological response of the PC to sustained or vibrating mechanical stimuli, but they have used estimates of the receptor's mechanical properties, which remain largely unmeasured.
View Article and Find Full Text PDFThe Pacinian corpuscle (PC) is a cutaneous mechanoreceptor that senses low-amplitude, high-frequency vibrations. The PC contains a nerve fiber surrounded by alternating layers of solid lamellae and interlamellar fluid, and this structure is hypothesized to contribute to the PC's role as a band-pass filter for vibrations. In this study, we sought to evaluate the relationship between the PC's material and geometric parameters and its response to vibration.
View Article and Find Full Text PDFThe Pacinian corpuscle (PC) is a dermal mechanoreceptor that responds to high-frequency (20-1000 Hz) vibrations. The PC's structure allows transmission of vibrations through its layers (lamellae) to the centrally-located nerve fiber (neurite). This work combines mechanical models of the PC with an electrochemical model of peripheral nerves to simulate the tactile response of the entire system.
View Article and Find Full Text PDFCutaneous mechanoreceptors transduce different tactile stimuli into neural signals that produce distinct sensations of touch. The Pacinian corpuscle (PC), a cutaneous mechanoreceptor located deep within the dermis of the skin, detects high frequency vibrations that occur within its large receptive field. The PC is comprised of lamellae that surround the nerve fiber at its core.
View Article and Find Full Text PDFThe facet joint is commonly associated with neck and low back pain and is susceptible to loading-induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading-induced pain remain unknown. Altered brain-derived neurotrophic factor (BDNF) levels are associated with a host of painful conditions, but the role of BDNF in loading-induced joint pain remains undefined.
View Article and Find Full Text PDFCervical nerve roots are susceptible to compression injuries of various durations. The duration of an applied compression has been shown to contribute to both the onset of persistent pain and also the degree of spinal cellular and molecular responses related to nociception. This study investigated the relationship between peripherally-evoked activity in spinal cord neurons during a root compression and the resulting development of axonal damage.
View Article and Find Full Text PDFThe cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transporters in the dorsal root ganglia (DRG) and spinal cord.
View Article and Find Full Text PDF