Toxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the complex, with 50 modules present in the genome. In type IIA modules, the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein.
View Article and Find Full Text PDFToxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the complex, with 50 modules present in the genome. In type IIA modules the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein.
View Article and Find Full Text PDFFerret Systemic Coronaviral Disease (FSCD) is a systemic disease caused by ferret systemic coronavirus, which is considered lethal in most of the ferrets that are affected by it. To our knowledge, no treatment has been shown to be effective against FSCD in vivo, and most of the ferrets are euthanized or die after the development of clinical disease. GS-441524 has been shown to be effective in successfully treating cats with Feline Infectious Peritonitis (FIP), a disease that shares similarities with FSCD.
View Article and Find Full Text PDFMycobacteria spatially organize their plasma membrane, and many enzymes involved in envelope biosynthesis associate with a membrane compartment termed the intracellular membrane domain (IMD). The IMD is concentrated in the polar regions of growing cells and becomes less polarized under nongrowing conditions. Because mycobacteria elongate from the poles, the observed polar localization of the IMD during growth likely supports the localized biosynthesis of envelope components.
View Article and Find Full Text PDFMany antibiotics target the assembly of cell wall peptidoglycan, an essential, heteropolymeric mesh that encases most bacteria. In rod-shaped bacteria, cell wall elongation is spatially precise yet relies on limited pools of lipid-linked precursors that generate and are attracted to membrane disorder. By tracking enzymes, substrates, and products of peptidoglycan biosynthesis in , we show that precursors are made in plasma membrane domains that are laterally and biochemically distinct from sites of cell wall assembly.
View Article and Find Full Text PDFMycobacteria and related bacteria in the Actinobacteria phylum are unusual in that they produce phosphatidylinositol (PI) as a major phospholipid species. PI can be further modified by glycan polymers, leading to the synthesis of PI mannosides (PIMs), lipomannan (LM), and lipoarabinomannan (LAM). Small lipids such as PI and PIMs are extracted with a mixture of chloroform, methanol, and water and analyzed by thin layer chromatography.
View Article and Find Full Text PDFThe intracellular membrane domain (IMD) in mycobacteria is a spatially distinct region of the plasma membrane with diverse functions. Previous comparative proteomic analysis of the IMD suggested that menaquinone biosynthetic enzymes are associated with this domain. In the present study, we determined the subcellular site of these enzymes using sucrose density gradient fractionation.
View Article and Find Full Text PDFThe mycobacterial cell envelope is a complex multilayered structure that provides the strength to the rod-shaped cell and creates the permeability barrier against antibiotics and host immune attack. In this review, we will discuss the spatial coordination of cell envelope biosynthesis and how plasma membrane compartmentalization plays a role in this process. The spatial organization of cell envelope biosynthetic enzymes as well as other membrane-associated proteins is crucial for cellular processes such as polar growth and midcell septum formation.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
February 2018
In the last several decades, exposure to pesticides has become a concern to environmental and human health. Many pesticides are environmentally persistent and are characterized by varying degrees of toxicity and adverse effects, including DNA damage. The present study was undertaken to evaluate the genotoxic potential of organophosphate pesticide fenthion in Wistar rats, as assessed by the comet assay.
View Article and Find Full Text PDF