Heterologous expression of integral membrane proteins from Helicobacter pylori 26695 in Escherichia coli enabled the identification of 17 candidates for purification and subsequent crystallization. 45% of the purified proteins were contaminated with what was later identified as the multidrug efflux pump (AcrB)of E. coli, and 17% with the succinate dehydrogenase.
View Article and Find Full Text PDFHelicobacter pylori is a gram-negative pathogenic microaerophile with a particular tropism for the mucosal surface of the gastric epithelium. Despite its obligatory microaerophilic character, it can metabolize D-glucose and/or D-galactose in both oxidative and fermentative pathways via a Na(+)-dependent secondary active transport, a glucokinase and enzymes of the pentose phosphate pathway. We have assigned the Na(+)-dependent transport of glucose to the protein product of the H.
View Article and Find Full Text PDFThe efficiency of Helicobacter pylori as a mucosal pathogen is caused by unique soluble and integral membrane proteins, which allow its survival at acidic pH and successful colonization of the gastric environment. With about one-fourth of the H. pylori's proteome comprising integral membrane proteins, the need for solution of their three-dimensional (3D) structures becomes persistent as it can potentially drive the generation of more effective drugs.
View Article and Find Full Text PDF