Competitive sustainable production in industry demands new and better biocatalysts, optimized bioprocesses and cost-effective product recovery. Our review sheds light on the progress made for the individual steps towards these goals, starting with the discovery of new enzymes and their corresponding genes. The enzymes are subsequently engineered to improve their performance, combined in reaction cascades to expand the reaction scope and integrated in whole cells to provide an optimal environment for the bioconversion.
View Article and Find Full Text PDFThe original version of this Article was updated after publication to add the ORCID ID of the author Thomas Vogl, which was inadvertently omitted, and to include a corrected version of the 'Description of Additional Supplementary Files' which originally lacked legends for each file.
View Article and Find Full Text PDFNumerous synthetic biology endeavors require well-tuned co-expression of functional components for success. Classically, monodirectional promoters (MDPs) have been used for such applications, but MDPs are limited in terms of multi-gene co-expression capabilities. Consequently, there is a pressing need for new tools with improved flexibility in terms of genetic circuit design, metabolic pathway assembly, and optimization.
View Article and Find Full Text PDFAmides are widespread in biologically active compounds with a broad range of applications in biotechnology, agriculture and medicine. Therefore, as alternative to chemical synthesis the biocatalytic amide synthesis is a very interesting field of research. As usual, Nature can serve as guide in the quest for novel biocatalysts.
View Article and Find Full Text PDFThe heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth.
View Article and Find Full Text PDFMutation of the sesquiterpene synthase Cop2 was conducted with a high-throughput screen for the cyclization activity using a non-natural substrate. A mutant of Cop2 was identified that contained three amino acid substitutions. This mutant, 17H2, converted the natural substrate FPP into germacrene D-4-ol with 77% selectivity.
View Article and Find Full Text PDFSynthetic promoters are commonly used tools for circuit design or high level protein production. Promoter engineering efforts in yeasts, such as Saccharomyces cerevisiae and Pichia pastoris have mostly been focused on altering upstream regulatory sequences such as transcription factor binding sites. In higher eukaryotes synthetic core promoters, directly needed for transcription initiation by RNA Polymerase II, have been successfully designed.
View Article and Find Full Text PDFVarious artificial network designs that involve biocatalysts were tested for the asymmetric amination of sec-alcohols to the corresponding α-chiral primary amines. The artificial systems tested involved three to five redox enzymes and were exemplary of a range of different sec-alcohol substrates. Alcohols were oxidised to the corresponding ketone by an alcohol dehydrogenase.
View Article and Find Full Text PDFA highly enantioselective and stereoselective secondary alkylsulfatase from Pseudomonas sp. DSM6611 (Pisa1) was heterologously expressed in Escherichia coli BL21, and purified to homogeneity for kinetic and structural studies. Structure determination of Pisa1 by X-ray crystallography showed that the protein belongs to the family of metallo-β-lactamases with a conserved binuclear Zn(2+) cluster in the active site.
View Article and Find Full Text PDF