Publications by authors named "Julia Pai"

Mice display variability in fear-like responses to many external salient events, such as encountering unexpected novel objects, but the neural basis of this variability has been unclear. Akiti et al. (2022) demonstrate that dopamine in the tail of the rodent striatum predicts and regulates salience-related variability in individuals' behavioral responses to unexpected novel objects.

View Article and Find Full Text PDF

Neuroeconomics studies how decision-making is guided by the value of rewards and punishments. But to date, little is known about how noxious experiences impact decisions. A challenge is the lack of an aversive stimulus that is dynamically adjustable in intensity and location, readily usable over many trials in a single experimental session, and compatible with multiple ways to measure neuronal activity.

View Article and Find Full Text PDF

Primates interact with the world by exploring visual objects; they seek opportunities to view novel objects even when these have no extrinsic reward value. How the brain controls this novelty seeking is unknown. Here we show that novelty seeking in monkeys is regulated by the zona incerta (ZI).

View Article and Find Full Text PDF

Video tracking is an essential tool in rodent research. Here, we demonstrate a machine vision rodent tracking camera based on a low-cost, open-source, machine vision camera, the OpenMV Cam M7. We call our device the rodent arena tracker (RAT), and it is a pocket-sized machine vision-based position tracker.

View Article and Find Full Text PDF

Humans and other animals often show a strong desire to know the uncertain rewards their future has in store, even when they cannot use this information to influence the outcome. However, it is unknown how the brain predicts opportunities to gain information and motivates this information-seeking behavior. Here we show that neurons in a network of interconnected subregions of primate anterior cingulate cortex and basal ganglia predict the moment of gaining information about uncertain rewards.

View Article and Find Full Text PDF

Most single units recorded from macaque secondary visual cortex (V2) respond with higher firing rates to synthetic texture images containing "naturalistic" higher-order statistics than to spectrally matched "noise" images lacking these statistics. In contrast, few single units in V1 show this property. We explored how the strength and dynamics of response vary across the different layers of visual cortex by recording multiunit (defined as high-frequency power in the local field potential) and gamma-band activity evoked by brief presentations of naturalistic and noise images in V1 and V2 of anesthetized macaque monkeys of both sexes.

View Article and Find Full Text PDF