Determining the accurate chemical structures of synthesized compounds is essential for biomedical studies and computer-assisted drug design. The unequivocal determination of N-adamantylation or N-arylation site(s) in nitrogen-rich heterocycles, characterized by a low density of hydrogen atoms, using NMR methods at natural isotopic abundance is difficult. In these compounds, the heterocyclic moiety is covalently attached to the carbon atom of the substituent group that has no bound hydrogen atoms, and the connection between the two moieties of the compound cannot always be established via conventional H-H and H-C NMR correlation experiments (COSY and HMBC, respectively) or nuclear Overhauser effect spectroscopy (NOESY or ROESY).
View Article and Find Full Text PDFTo explain the chemical reactivity of polychlorinated biphenyls in nucleophilic (S(N)) and electrophilic (S(E)) substitutions, quantum chemical calculations were carried out at the B3LYP/6-31G(d) level of the Density Functional Theory in gas phase. Carbon atomic charges in biphenyl structure were calculated by the Atoms-in-Molecules method. Chemical hardness and global electrophilicity index parameters were determined for congeners.
View Article and Find Full Text PDFThe partitioning of a substrate from one phase into another is a complex process with widespread applications: from chemical technology to the pharmaceutical industry. One particularly well-known and well-studied example is 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane) trafficking through the lipid bilayer. Halothane is a model volatile anesthetic known to impact functions of model lipid bilayers, altering the structure and thickness upon its partitioning from the bulk phase.
View Article and Find Full Text PDFhERG1 is a member of the cyclic nucleotide binding domain family of K(+) channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role.
View Article and Find Full Text PDFIon-coupled transport of neurotransmitter molecules by neurotransmitter:sodium symporters (NSS) play an important role in the regulation of neuronal signaling. One of the major events in the transport cycle is ion-substrate coupling and formation of the high-affinity occluded state with bound ions and substrate. Molecular mechanisms of ion-substrate coupling and the corresponding ion-substrate stoichiometry in NSS transporters has yet to be understood.
View Article and Find Full Text PDF