Herpesviruses are double-stranded DNA, enveloped viruses that infect host cells through fusion with either the host cell plasma membrane or endocytic vesicle membranes. Efficient infection of host cells by herpesviruses is remarkably more complex than infection by other viruses, as it requires the concerted effort of multiple glycoproteins and involves multiple host receptors. The structures of the major viral glycoproteins and a number of host receptors involved in the entry of the prototypical herpesviruses, the herpes simplex viruses (HSVs) and Epstein-Barr virus (EBV), are now known.
View Article and Find Full Text PDFMembrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a "hemifusion" intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion.
View Article and Find Full Text PDFOf the four required herpes simplex virus (HSV) entry glycoproteins, the precise role of gH-gL in fusion remains the most elusive. The heterodimer gH-gL has been proposed to mediate hemifusion after the interaction of another required glycoprotein, gD, with a receptor. To identify functional domains of HSV-1 gH, we generated 22 randomized linker-insertion mutants.
View Article and Find Full Text PDFIn the present study, we performed DNA microarray analyses and phenotypic and functional analyses in an effort to elucidate the mechanisms by which ongoing HIV replication affects the physiologic function of natural killer (NK) cells. Functional assays confirmed an increased propensity of NK cells from HIV-infected viremic individuals to undergo Fas-mediated apoptosis but not CD16- or NKG2D-mediated apoptosis. Serum levels of sFasL and expression of Ki67 on NK cells were markedly elevated in HIV-infected viremic individuals when compared with those of HIV-infected aviremic and HIV-seronegative individuals.
View Article and Find Full Text PDFWe have previously described a number of NK cell dysfunctions in HIV-viremic individuals. In the present study, we performed DNA microarray analysis followed by phenotypic and functional characterization in an effort to investigate which HIV envelope glycoproteins (gp120) affect the physiologic functions of NK cells. Upon treatment of NK cells with HIV gp120, DNA microarray analyses indicated up-regulation of several categories of genes that are associated with apoptosis, suppression of both cellular proliferation and survival, as well as down-regulation of genes that play a vital role in cell proliferation, innate immune defense mechanism, and cell survival.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) are the three most common chronic viral infections seen in the world. All three viruses share modes of transmission and hence co-exist in the same host at significantly high rates. HIV-induced immunosuppression has deleterious effects on the natural history, pathophysiology, diagnosis, therapeutic responses to hepatitis viruses.
View Article and Find Full Text PDF