Publications by authors named "Julia Neudorfer"

The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated Ag by T cell-based immunotherapeutical strategies such as cancer vaccines and adoptive T cell transfer. The prerequisite for a successful T cell-based therapy is the induction of T cells capable of recognizing the HER2-expressing tumor cells. In this study, we generated human cytotoxic T cell clones directed against the HER2(369-377) epitope known to be naturally presented with HLA-A*0201.

View Article and Find Full Text PDF

The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated antigen by immunotherapeutical approaches based on HER2-directed monoclonal antibodies and cancer vaccines. We describe the adoptive transfer of autologous HER2-specific T-lymphocyte clones to a patient with metastatic HER2-overexpressing breast cancer. The HLA/multimer-based monitoring of the transferred T lymphocytes revealed that the T cells rapidly disappeared from the peripheral blood.

View Article and Find Full Text PDF

The development of MHC/peptide multimers has facilitated the visualization and purification of antigen-specific T cells. However, the persistence of multimers leads to prolonged T cell receptor signaling and subsequently to altered T-cell function. We have recently developed a new type of MHC/peptide multimers, which can be dissociated from the T cell.

View Article and Find Full Text PDF

T cell receptor (TCR) gene transfer is a convenient method to produce antigen-specific T cells for adoptive therapy. However, the expression of two TCR in T cells could impair their function or cause unwanted effects by mixed TCR heterodimers. With five different TCR and four different T cells, either mouse or human, we show that some TCR are strong--in terms of cell surface expression--and replace weak TCR on the cell surface, resulting in exchange of antigen specificity.

View Article and Find Full Text PDF