Publications by authors named "Julia Mikhailova"

Fast and accurate detection of microbial cells in clinical samples is highly valuable but remains a challenge. Here, a simple, culture-free diagnostic system is developed for direct detection of pathogenic bacteria in water, urine, and serum samples using an optical colorimetric biosensor. It consists of printed nanoarrays chemically conjugated with specific antibodies that exhibits distinct color changes after capturing target pathogens.

View Article and Find Full Text PDF

Nontuberculous mycobacteria (NTM) are widespread in the environment and can cause various diseases in humans, especially immunocompromised patients. Treatment of diseases caused by NTM is a complicated issue, mainly due to the resistance of the pathogen to most antimicrobial agents. Bedaquiline (Bdq) is now widely used for the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB).

View Article and Find Full Text PDF

Relativistic high-order harmonic generation from solid-density plasma offers a compact source of coherent ultraviolet and x-ray light. For solid targets much thinner than the laser wavelength, the plasma thickness can be tuned to increase conversion efficiency; a reduction in total charge allows for balancing the laser and plasma driving forces, producing the most effective interaction. Unlike for semi-infinite plasma surfaces, we find that for ultrathin foil targets the dominant factor in the emission spectral shape is the finite width of the electron nanobunches, leading to a power-law exponent of approximately 10/3.

View Article and Find Full Text PDF

Ultrashort pulsed lasers provide uniquely detailed access to the ultrafast dynamics of physical, chemical, and biological systems, but only a handful of wavelengths are directly produced by solid-state lasers, necessitating efficient high-power frequency conversion. Relativistic plasma mirrors generate broadband power-law spectra, that may span the gap between petawatt-class infrared laser facilities and x-ray free-electron lasers; despite substantial theoretical work the ultimate efficiency of this relativistic high-order-harmonic generation remains unclear. We show that the coherent radiation emitted by plasma mirrors follows a power-law distribution of energy over frequency with an exponent that, even in the ultrarelativistic limit, strongly depends on the ratio of laser intensity to plasma density and exceeds the frequently quoted value of  -8/3 over a wide range of parameters.

View Article and Find Full Text PDF

We consider backscattering of laser pulses in strongly magnetized plasma mediated by kinetic magnetohydrodynamic waves. Magnetized low-frequency (MLF) scattering, which can occur when the external magnetic field is neither perpendicular nor parallel to the laser propagation direction, provides an instability growth rate higher than Raman scattering and a frequency downshift comparable to Brillouin scattering. In addition to the high growth rate, which allows smaller plasmas, and the 0.

View Article and Find Full Text PDF

Plasma-based parametric amplification using stimulated Brillouin scattering offers a route to coherent x-ray pulses orders of magnitude more intense than those of the brightest available sources. Brillouin amplification permits amplification of shorter wavelengths with lower pump intensities than Raman amplification, which Landau and collisional damping limit in the x-ray regime. Analytic predictions, numerical solutions of the three-wave-coupling equations, and particle-in-cell simulations suggest that Brillouin amplification in solid-density plasmas will allow compression of current x-ray free-electron laser pulses to subfemtosecond durations and unprecedented intensities.

View Article and Find Full Text PDF

We consider the efficiency limit of relativistic high-order-harmonic emission from solid targets achievable with tailored light fields. Using one-dimensional particle-in-cell simulations, the maximum energy conversion efficiency is shown to reach as high as 10% for the harmonics in the range of 80-200 eV and is largely independent of laser intensity and plasma density. The waveforms most effective at driving harmonics have a broad spectrum with a lower-frequency limit set by the width of the incident pulse envelope and an upper limit set by the relativistic plasma frequency.

View Article and Find Full Text PDF

Stimulated Brillouin backscattering of light is shown to be drastically enhanced in electron-positron plasmas, in contrast to the suppression of stimulated Raman scattering. A generalized theory of three-wave coupling between electromagnetic and plasma waves in two-species plasmas with arbitrary mass ratios, confirmed with a comprehensive set of particle-in-cell simulations, reveals violations of commonly held assumptions about the behavior of electron-positron plasmas. Specifically, in the electron-positron limit three-wave parametric interaction between light and the plasma acoustic wave can occur, and the acoustic wave phase velocity differs from its usually assumed value.

View Article and Find Full Text PDF

We study the generation of attosecond x-ray and ultraviolet pulses from relativistically driven overdense plasma targets with two-color incident light. Particle-in-cell simulations show that significant improvement in pulse intensity and isolation is achievable with appropriate laser and plasma parameters. Conversion of 5% of incident laser energy to its second harmonic can enhance the intensity of generated attosecond pulses by an order of magnitude.

View Article and Find Full Text PDF

We report the generation of few-cycle multiterawatt light pulses with a temporal contrast of 10(10), when measured as close as 2 ps to the pulse's peak. Tens of picoseconds before the main pulse, the contrast value is expected to spread much beyond the measurement limit. Separate measurements of contrast improvement factors at different stages of the laser system indicate that real contrast values may reach 10(19) and 10(14), when measured 50 and 25 ps before the pulse's peak, respectively.

View Article and Find Full Text PDF