Tyrosyl DNA phosphodiesterase (TDP1) is a DNA repair enzyme that hydrolyzes the phosphotyrosyl linkage between 3'-DNA-protein crosslinks such as stalled topoisomerase 1 cleavage complexes (Top1cc). Here, we present a fluorescence-resonance-energy-transfer-(FRET) based assay to estimate modulation of TDP1 activity through arginine methylation. We describe steps for TDP1 expression and purification and estimating TDP1 activity using fluorescence-quenched probes mimicking Top1cc.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety and is implicated in the repair of trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). Protein arginine methyltransferase 5 (PRMT5) catalyzes arginine methylation of TDP1 at the residues R361 and R586. Here, we establish mechanistic crosstalk between TDP1 arginine methylation and ubiquitylation, which is critical for TDP1 homeostasis and cellular responses to Top1 poisons.
View Article and Find Full Text PDFThe self-renewal efficiency of mouse embryonic stem cells (ESCs) is determined by the concentration of the transcription factor NANOG. While NANOG binds thousands of sites in chromatin, the regulatory systems that control DNA binding are poorly characterised. Here, we show that NANOG is phosphorylated by casein kinase I, and identify target residues.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase (Tdp1) is a DNA 3'-end processing enzyme that repairs topoisomerase 1B-induced DNA damage. We use a new tool combining site-specific DNA-protein cross-linking with mass spectrometry to identify Tdp1 interactions with DNA. A conserved phenylalanine (F259) of Tdp1, required for efficient DNA processing in biochemical assays, cross-links to defined positions in DNA substrates.
View Article and Find Full Text PDFDelivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats.
View Article and Find Full Text PDFCut-and-paste DNA transposons of the mariner/Tc1 family are useful tools for genome engineering and are inserted specifically at TA target sites. A crystal structure of the mariner transposase Mos1 (derived from Drosophila mauritiana), in complex with transposon ends covalently joined to target DNA, portrays the transposition machinery after DNA integration. It reveals severe distortion of target DNA and flipping of the target adenines into extra-helical positions.
View Article and Find Full Text PDFDuring cut-and-paste mariner/Tc1 transposition, transposon DNA is cut precisely at its junction with flanking DNA, ensuring the transposon is neither shortened nor lengthened with each transposition event. Each transposon end is flanked by a TpA dinucleotide: the signature target site duplication of mariner/Tc1 transposition. To establish the role of this sequence in accurate DNA cleavage, we have determined the crystal structure of a pre-second strand cleavage mariner Mos1 transpososome.
View Article and Find Full Text PDFMost DNA transposons move from one genomic location to another by a cut-and-paste mechanism and are useful tools for genomic manipulations. Short inverted repeat (IR) DNA sequences marking each end of the transposon are recognized by a DNA transposase (encoded by the transposon itself). This enzyme cleaves the transposon ends and integrates them at a new genomic location.
View Article and Find Full Text PDFDNA transposases catalyze the movement of transposons around genomes by a cut-and-paste mechanism related to retroviral integration. Transposases and retroviral integrases share a common RNaseH-like domain with a catalytic DDE/D triad that coordinates the divalent cations required for DNA cleavage and integration. The anti-retroviral drugs Raltegravir and Elvitegravir inhibit integrases by displacing viral DNA ends from the catalytic metal ions.
View Article and Find Full Text PDFMacrophage migration inhibitory factor (MIF) is a proinflammatory molecule in mammals that, unusually for a cytokine, exhibits tautomerase and oxidoreductase enzymatic activities. Homologues of this well conserved protein are found within diverse phyla including a number of parasitic organisms. Herein, we produced recombinant histidine-tagged Toxoplasma gondii MIF (TgMIF), a 12-kDa protein that lacks oxidoreductase activity but exhibits tautomerase activity with a specific activity of 19.
View Article and Find Full Text PDFThe parasitic protozoan organism Trypanosoma cruzi is the causative agent of Chagas disease. The insect vector-dwelling epimastigote form of the organism expresses a low abundance glycoprotein associated with the flagellum adhesion zone, called gp72. The gp72 glycoprotein was first identified with an anti-carbohydrate IgG3 monoclonal antibody called WIC29.
View Article and Find Full Text PDFDNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end.
View Article and Find Full Text PDFThe extracellular parasite Trichomonas vaginalis contains a surface glycoconjugate that appears to mediate parasite-host cell interaction via binding to human galectin-1. This glycoconjugate also elicits cytokine production from human vaginal epithelial cells, implicating its role in modulation of host immune responses. We have analyzed the structure of this glycoconjugate, previously described to contain the sugars rhamnose (Rha), N-acetylglucosamine (GlcNAc), galactose (Gal), xylose (Xyl), N-acetylgalactosamine (GalNAc), and glucose (Glc), using gas chromatograph mass spectrometry (GC-MS), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF), electrospray MS/MS, and nuclear magnetic resonance (NMR), combined with chemical and enzymatic digestions.
View Article and Find Full Text PDFA key step in cut-and-paste DNA transposition is the pairing of transposon ends before the element is excised and inserted at a new site in its host genome. Crystallographic analyses of the paired-end complex (PEC) formed from precleaved transposon ends and the transposase of the eukaryotic element Mos1 reveals two parallel ends bound to a dimeric enzyme. The complex has a trans arrangement, with each transposon end recognized by the DNA binding region of one transposase monomer and by the active site of the other monomer.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2009
Leishmania major, an intracellular parasitic protozoon that infects, differentiates and replicates within macrophages, expresses two closely related MIF-like proteins. To ascertain the roles and potential differences of these two Leishmania proteins, recombinant L. major MIF1 and MIF2 have been produced and the structures resolved by X-ray crystallography.
View Article and Find Full Text PDFWe have cloned, expressed, purified and characterised ceFKB-6, the only large tetratricopeptide repeat motif-containing immunophilin in Caenorhabditis elegans which is similar to the human orthologues FKBP51 and FKBP52. It shows increased peptidyl prolyl isomerase activity, the measured k(cat)/K(m) of 1.3 x 10(6) M(-1) s(-1)is twofold greater than that of hFKBP12 and hFKBP51.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2007
A complex formed between Mos1 transposase and its inverted-repeat DNA has been crystallized. The crystals diffract to 3.25 A resolution and exhibit monoclinic (P2(1)) symmetry, with unit-cell parameters a = 120.
View Article and Find Full Text PDFWe present the crystal structure of the catalytic domain of Mos1 transposase, a member of the Tc1/mariner family of transposases. The structure comprises an RNase H-like core, bringing together an aspartic acid triad to form the active site, capped by N- and C-terminal alpha-helices. We have solved structures with either one Mg2+ or two Mn2+ ions in the active site, consistent with a two-metal mechanism for catalysis.
View Article and Find Full Text PDFThe flagellar pocket of the bloodstream form of the African sleeping sickness parasite Trypanosoma brucei contains material that binds the beta-d-galactose-specific lectin ricin (Brickman, M. J., and Balber, A.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2004
A soluble single-point mutant of full-length Mos1 mariner transposase (MW = 40.7 kDa) has been overexpressed in Escherichia coli, purified to 95% homogeneity and crystallized. This provides the first example of the crystallization of a eukaryotic transposase.
View Article and Find Full Text PDF