Publications by authors named "Julia L Greenstein"

Incredible strides have been made since the discovery of insulin almost 100 years ago. Insulin formulations have improved dramatically, glucose levels can be measured continuously, and recently first-generation biomechanical "artificial pancreas" systems have been approved by regulators around the globe. However, still only a small fraction of patients with diabetes achieve glycemic goals.

View Article and Find Full Text PDF

Diabetes, a large and growing worldwide health concern, affects the functional mass of the pancreatic beta cell, which in turn affects the glucose regulation of the body. Successful transplantation of cadaveric islets and pancreata for patients with uncontrolled type 1 diabetes has provided proof-of-concept for the development of commercial cell therapy approaches to treat diabetes. Three broad issues must be addressed before surrogate insulin-producing cells can become a reality: the development of a surrogate beta-cell source, immunoprotection, and translation.

View Article and Find Full Text PDF

Hearts from alpha1,3-galactosyltransferase knockout pigs (GalT-KO, n = 8) were transplanted heterotopically into baboons using an anti-CD154 monoclonal antibody-based regimen. The elimination of the galactose-alpha1,3-galactose epitope prevented hyperacute rejection and extended survival of pig hearts in baboons for 2-6 months (median, 78 d); the predominant lesion associated with graft failure was a thrombotic microangiopathy, with resulting ischemic injury. There were no infectious complications directly related to the immunosuppressive regimen.

View Article and Find Full Text PDF

Galactose alpha1-3 galactose (Gal) trisaccharides are present on the surface of wild-type pig cells, as well as on viruses particles produced from such cells. The recognition of Gal sugars by natural anti-Gal antibodies (NAb) in human and Old World primate serum can cause the lysis of the particles via complement-dependent mechanisms and has therefore been proposed as an important antiviral mechanism. Recently, pigs have been generated that possess disrupted galactosyl-transferase (GGTA1) genes.

View Article and Find Full Text PDF

Hyperacute rejection of porcine organs by old world primate recipients is mediated through preformed antibodies against galactosyl-alpha-1,3-galactose (Galalpha-1,3-Gal) epitopes expressed on the pig cell surface. Previously, we generated inbred miniature swine with a null allele of the alpha-1,3-galactosyltransferase locus (GGTA1) by nuclear transfer (NT) with gene-targeted fibroblasts. To expedite the generation of GGTA1 null pigs, we selected spontaneous null mutant cells from fibroblast cultures of heterozygous animals for use in another round of NT.

View Article and Find Full Text PDF

Here we report the identification of inbred miniature swine that failed to produce human-tropic replication-competent porcine endogenous retroviruses (HTRC PERVs), using in vitro coculture assays. When HTRC PERVs were isolated from transmitting animals, all were recombinant viruses, with the receptor-binding domain of PERV-A combining with PERV-C-related sequences.

View Article and Find Full Text PDF

The presence of galactose alpha-1,3-galactose residues on the surface of pig cells is a major obstacle to successful xenotransplantation. Here, we report the production of four live pigs in which one allele of the alpha-1,3-galactosyltransferase locus has been knocked out. These pigs were produced by nuclear transfer technology; clonal fetal fibroblast cell lines were used as nuclear donors for embryos reconstructed with enucleated pig oocytes.

View Article and Find Full Text PDF