Publications by authors named "Julia Kovsan"

Background & Aims: While the world is extensively looking for alternatives to animal protein sources, it is not clear which plant sources can provide the requisite full complement of essential amino acids (EAAs). Wolffia globosa is an aquatic, edible duckweed, the smallest plant on earth, and it offers all nine EAAs, dietary fibers, polyphenols, iron, zinc and B vitamin. This work was designed to evaluate Mankai (a newly developed high-protein strain of W.

View Article and Find Full Text PDF

Background & Aims: We aimed to assess the association between the distinct abdominal sub-depots and resting energy expenditure (REE).

Methods: We performed magnetic resonance imaging (MRI) to quantify abdominal visceral-adipose-tissue (VAT), deep-subcutaneous-adipose-tissue (deep-SAT), and superficial-subcutaneous-adipose-tissue (superficial-SAT). We measured REE by indirect-calorimetry.

View Article and Find Full Text PDF

Background: Recommendations for moderate alcohol consumption remain controversial, particularly in type 2 diabetes mellitus (T2DM). Long-term randomized, controlled trials (RCTs) are lacking.

Objective: To assess cardiometabolic effects of initiating moderate alcohol intake in persons with T2DM and whether the type of wine matters.

View Article and Find Full Text PDF

Autophagy genes' expression is upregulated in visceral fat in human obesity, associating with obesity-related cardio-metabolic risk. E2F1 (E2F transcription factor 1) was shown in cancer cells to transcriptionally regulate autophagy. We hypothesize that E2F1 regulates adipocyte autophagy in obesity, associating with endocrine/metabolic dysfunction, thereby, representing non-cell-cycle function of this transcription factor.

View Article and Find Full Text PDF

Body fat distribution, especially visceral fat accumulation, may contribute more than total fat mass per se to the development of metabolic and cardiovascular disorders. Early prevention highly improves health outcomes later in life, especially when considering such cumulative conditions as atherosclerosis. However, as these processes emerge to be partly reversible, dietary and lifestyle interventions at any age and health condition are greatly beneficial.

View Article and Find Full Text PDF

Objective: This study addressed the long-term effect of various diets, particularly low-carbohydrate high-protein, on renal function on participants with or without type 2 diabetes.

Research Design And Methods: In the 2-year Dietary Intervention Randomized Controlled Trial (DIRECT), 318 participants (age, 51 years; 86% men; BMI, 31 kg/m(2); mean estimated glomerular filtration rate [eGFR], 70.5 mL/min/1.

View Article and Find Full Text PDF

The inflammasome has been recently implicated in obesity-associated dys-metabolism. However, of its products, the specific role of IL-1β was clinically demonstrated to mediate only the pancreatic beta-cell demise, and in mice mainly the intra-hepatic manifestations of obesity. Yet, it remains largely unknown if IL-1β, a cytokine believed to mainly function locally, could regulate dysfunctional inter-organ crosstalk in obesity.

View Article and Find Full Text PDF

Protein S-nitrosylation is a reversible protein modification implicated in both physiological and pathophysiological regulation of protein function. In obesity, skeletal muscle insulin resistance is associated with increased S-nitrosylation of insulin-signaling proteins. However, whether adipose tissue is similarly affected in obesity and, if so, what are the causes and functional consequences of increased S-nitrosylation in this tissue are unknown.

View Article and Find Full Text PDF

Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype.

Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat depot and distribution-dependent manner.

Setting And Patients: Paired omental (Om) and subcutaneous (Sc) adipose tissue samples were used from obese and nonobese (n = 65, cohort 1); lean, Sc-obese and intraabdominally obese (n = 196, cohort 2); severely obese persons without diabetes or obesity-associated morbidity, matched for being insulin sensitive or resistant (n = 60, cohort 3).

View Article and Find Full Text PDF

Autophagy is a major degradative pathway(s) by which intracellular components are delivered into the lysosomes. It is largely implicated in determining cell death and survival because it eliminates unnecessary, damaged, and/or potentially harmful cellular products and organelles and is an important source for nutrients and energy production under conditions of external nutrient deficiency. As such, autophagy has been suggested to contribute to the regulation of carbohydrate and protein metabolism during fasting.

View Article and Find Full Text PDF

Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided.

View Article and Find Full Text PDF

Intra-abdominal (IA) fat functionally differs from subcutaneous (SC) adipose tissue, likely contributing to its stronger association with obesity-induced morbidity and to differential response to medications. Drug-induced partial lipodystrophy, like in response to antiretroviral agents, is an extreme manifestation of the different response of different fat depots, with loss of SC but not IA. Investigating depot-specific adipocyte differences is limited by the low accessibility to IA fat and by the heterogenous cell population comprising adipose tissue.

View Article and Find Full Text PDF

A decrease in the lipid droplet-associated protein perilipin may constitute a mechanism for enhanced adipocyte lipolysis under nonstimulated (basal) conditions, and increased basal lipolysis has been linked to whole body metabolic dysregulation. Here we investigated whether the lipolytic actions of the human immunodeficiency virus protease inhibitor, nelfinavir, are mediated by decreased perilipin protein content and studied the mechanisms by which it occurs. Time course analysis revealed that the decrease in perilipin protein content preceded the increase in lipolysis.

View Article and Find Full Text PDF

Insulin responsiveness of adipocytes is acquired during normal adipogenesis, and is essential for maintaining whole-body insulin sensitivity. Differentiated adipocytes exposed to oxidative stress become insulin resistant, exhibiting decreased expression of genes like the insulin-responsive glucose transporter GLUT4. Here we assessed the effect of oxidative stress on DNA binding capacity of C/EBP isoforms known to participate in adipocyte differentiation, and determine the relevance for GLUT4 gene regulation.

View Article and Find Full Text PDF

Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein. It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis.

View Article and Find Full Text PDF