Severe forms of dilated cardiomyopathy (DCM) are associated with point mutations in the alternative splicing regulator RBM20 that are frequently located in the arginine/serine-rich domain (RS-domain). Such mutations can cause defective splicing and cytoplasmic mislocalization, which leads to the formation of detrimental cytoplasmic granules. Successful development of personalized therapies requires identifying the direct mechanisms of pathogenic RBM20 variants.
View Article and Find Full Text PDFDilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart.
View Article and Find Full Text PDFIn our previous study, we found that high doses of several substances with antioxidant capacities (Tempol, resveratrol, diphenyleneiodonium) can cause genotoxic stress and induce premature senescence in the human mesenchymal stem cells (MSCs). Here, using whole-transcriptome analysis, we revealed the signs of endoplasmic reticulum stress and unfolded protein response (UPR) in MSCs stressed with Tempol and resveratrol. In addition, we found the upregulation of genes, coding the UPR downstream target APC/C, and E3 ubiquitin ligase that regulate the stability of cell cycle proteins.
View Article and Find Full Text PDF