Appl Microbiol Biotechnol
September 2016
Halohydrin dehalogenases are rare but catalytically remarkable enzymes since they are able to form novel C-C, C-O, C-N, or C-S bonds. Very recently, a motif-based sequence database mining approach resulted in the identification of 37 novel halohydrin dehalogenase enzymes, many of them exhibiting only low sequence similarity to previously known halohydrin dehalogenases. In an attempt to explore the biocatalytic potential of these newly identified enzymes, 17 representatives from all six phylogenetic subtypes were heterologously produced in Escherichia coli, purified and characterized to determine their substrate scopes in the dehalogenation and epoxide ring-opening reaction.
View Article and Find Full Text PDFHalohydrin dehalogenases are very rare enzymes that are naturally involved in the mineralization of halogenated xenobiotics. Due to their catalytic potential and promiscuity, many biocatalytic reactions have been described that have led to several interesting and industrially important applications. Nevertheless, only a few of these enzymes have been made available through recombinant techniques; hence, it is of general interest to expand the repertoire of these enzymes so as to enable novel biocatalytic applications.
View Article and Find Full Text PDF