Background: Gastric cancers frequently overexpress the epidermal growth factor receptor (EGFR), which has been implicated in pathological processes including tumor cell motility, invasion and metastasis. Targeting EGFR with the inhibitory antibody cetuximab may affect the motile and invasive behavior of tumor cells. Here, we evaluated the effects of EGFR signaling in gastric cancer cell lines to link the phenotypic behavior of the cells with their molecular characteristics.
View Article and Find Full Text PDFPurpose: Gastric cancer remains a major health concern, and improvement of the therapeutic options is crucial. Treatment with targeted therapeutics such as the EGFR-targeting antibody cetuximab or the HER2-targeting antibody trastuzumab is either ineffective or moderately effective in this disease, respectively. In this study, we analysed the involvement of the HER receptor ligands amphiregulin (AREG), epidermal growth factor (EGF), heparin-binding epidermal growth factor (HB-EGF) and transforming growth factor alpha (TGFα) in the responsiveness of gastric cancer cell lines to cetuximab and trastuzumab.
View Article and Find Full Text PDFIn this paper we address the problem of recovering spatio-temporal trajectories of cancer cells in phase contrast video-microscopy where the user provides the paths on which the cells are moving. The paths are purely spatial, without temporal information. To recover the temporal information associated to a given path we propose an approach based on automatic cell detection and on a graph-based shortest path search.
View Article and Find Full Text PDFThe therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated in clinical studies. Reliable biomarkers for the identification of patients who are likely to benefit from this treatment are not available. In this study, we assessed the activity of cetuximab in five gastric cancer cell lines (AGS, AZ521, Hs746T, LMSU and MKN1).
View Article and Find Full Text PDFPurpose: The therapeutic activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab in gastric cancer is currently being investigated. Reliable biomarkers for the identification of patients who are likely to benefit from the treatment are not available. The aim of the study was to examine the drug sensitivity of five gastric cancer cell lines towards cetuximab as a single agent and to establish predictive markers for chemosensitivity in this cell culture model.
View Article and Find Full Text PDFTo sense ambient light conditions in order to optimize their growth and development, plants employ a battery of photoreceptors responsive to light quality and quantity. Essential for the sensing of red and far-red (FR) light is the phytochrome family of photoreceptors. Among them, phytochrome A is special because it mediates responses to different light conditions, including both very low fluences (very low fluence response [VLFR]) and high irradiances (high irradiance response [HIR]).
View Article and Find Full Text PDFThe phytochrome (phy)A and phyB photoreceptors mediate three photobiological response modes in plants; whereas phyA can mediate the very-low-fluence response (VLFR), the high-irradiance response (HIR) and, to some extent, the low fluence response (LFR), phyB and other type II phytochromes only mediate the LFR. To investigate to what level a rice phyA can complement for Arabidopsis phyA or phyB function and to evaluate the role of the serine residues in the first 20 amino acids of the N-terminus of phyA, we examined VLFR, LFR, and HIR responses in phyB and phyAphyB mutant plants transformed with rice PHYA cDNA or a mutant rice PHYA cDNA in which the first 10 serine residues were mutated to alanines (phyA SA). Utilizing mutants without endogenous phyB allowed the evaluation of red-light-derived responses sensed by the rice phyA.
View Article and Find Full Text PDF