The vasoactive intestinal peptide (VIP) and its G protein-coupled receptors VPAC1 and VPAC2 prominently mediate diverse physiological functions in the neural, endocrine, and immune systems. A deletion variant of mouse VPAC2 has been identified in immune cells that lacks amino acids 367-380 at the carboxyl-terminal end of the seventh transmembrane domain. When expressed at equivalent levels in a human Jurkat T cell line, which has very low endogenous expression of human VPAC1 and VPAC2, wild-type and deletion-variant VPAC2 bound the same amount of 125I-VIP with similar affinity.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) in blood, lymph, and immune tissues stimulates and regulates T cell migration through their S1P(1) (endothelial differentiation gene encoded receptor-1) G protein-coupled receptors. We show now that S1P(1)Rs also mediate suppression of T cell proliferation and cytokine production. Uptake of [(3)H]thymidine by mouse CD4 T cells stimulated with anti-CD3 mAbs plus either anti-CD28 or IL-7 was inhibited up to 50% by 10(-9)-10(-6) M S1P.
View Article and Find Full Text PDFVasoactive intestinal peptide (VIP) and its two G protein-coupled receptors, VPAC1 and VPAC2, are quantitatively prominent and functionally critical in the immune system. Transgenic (T) mice constitutively expressing VPAC2 selectively in CD4 T cells, at levels higher than those found after maximal induction in CD4 T cells of wild-type (N) mice, have elevated blood concentrations of IgE, IgG1, and eosinophils; enhanced immediate-type hypersensitivity; and reduced delayed-type hypersensitivity. In contrast, VPAC2-null (K) mice manifest decreased immediate-type hypersensitivity and enhanced delayed-type hypersensitivity.
View Article and Find Full Text PDFVasoactive intestinal peptide (VIP) and its two G protein-coupled receptors, VPAC1R and VPAC2R, are prominent in the immune system and potently affect T cells and macrophages. VPAC1Rs are expressed constitutively by blood and tissue T cells, with an order of prevalence of Th2>Th1>>Ts, and transmit signals suppressive for migration, proliferation and cytokine production. Immune activation of T cells downregulates VPAC1Rs and upregulates VPAC2Rs.
View Article and Find Full Text PDF