Publications by authors named "Julia J Jung"

Background/aims: The availability of truly maturated cardiomyocytic subtypes is a major prerequisite for cardiovascular cell replacement therapies. Pluripotent stem cells provide a suitable source for the development of new strategies to overcome enormous hurdles such as yield, purity and safety of in vitro generated cells.

Methods: To address these issues, we have refined existing forward programming protocols by combining forced exogenous overexpression of the early cardiovascular transcription factor Nkx2.

View Article and Find Full Text PDF

AMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αβγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia).

View Article and Find Full Text PDF

Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro.

View Article and Find Full Text PDF

Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production.

View Article and Find Full Text PDF

Background: Technical advances in Next Generation Sequencing (NGS) provide a means to acquire deeper insights into cellular functions. The lack of standardized and automated methodologies poses a challenge for the analysis and interpretation of RNA sequencing data. We critically compare and evaluate state-of-the-art bioinformatics approaches and present a workflow that integrates the best performing data analysis, data evaluation and annotation methods in a Transparent, Reproducible and Automated PipeLINE (TRAPLINE) for RNA sequencing data processing (suitable for Illumina, SOLiD and Solexa).

View Article and Find Full Text PDF

Treatment of the "sick sinus syndrome" is based on artificial pacemakers. These bear hazards such as battery failure and infections. Moreover, they lack hormone responsiveness and the overall procedure is cost-intensive.

View Article and Find Full Text PDF

Therapeutic approaches for "sick sinus syndrome" rely on electrical pacemakers, which lack hormone responsiveness and bear hazards such as infection and battery failure. These issues may be overcome via "biological pacemakers" derived from pluripotent stem cells (PSCs). Here, we show that forward programming of PSCs with the nodal cell inducer TBX3 plus an additional Myh6-promoter-based antibiotic selection leads to cardiomyocyte aggregates consisting of >80% physiologically and pharmacologically functional pacemaker cells.

View Article and Find Full Text PDF