To study the origin and the effects of steric strain on the chromophore conformation in rhodopsin, we have performed quantum-mechanical calculations on the wild-type retinal chromophore and four retinal derivatives, 13-demethyl-, 10-methyl-13-demethyl-, 10-methyl-, and 9-demethylretinal. For the dynamics of the whole protein, a combined quantum mechanics/molecular mechanics method (DFTB/CHARMM) was used and for the calculation of excited-state properties the nonempirical CASSCF/CASPT2 method. After relaxation inside the protein, all chromophores show significant nonplanar distortions from C10 to C13, most strongly for 10-methylretinal and least pronounced for 9-demethylretinal.
View Article and Find Full Text PDFThe trifluoromethoxycarbonyl radical CF(3)OCO is formed by low-pressure flash pyrolysis of CF(3)OC(O)OOC(O)OCF(3) or CF(3)OC(O)OOCF(3) in the presence of a high excess of CO and subsequent quenching of the reaction mixture as a CO matrix. The IR and UV spectra are recorded, and a DFT study of CF(3)OCO is presented. According to the quantum chemical calculations, two rotamers should exist with an energy difference between the isomers equal or larger than 12 kJmol(-1).
View Article and Find Full Text PDF