The prevention of diabetic foot ulcers remains a critical challenge. This study evaluates a smart compression sock designed to address this issue by integrating temperature, plantar pressure, and blood oxygen sensors and monitoring data recorded by these sensors. The smart sock, developed with input from a certified Pedorthist, was tested on 20 healthy adult participants aged 16 to 53.
View Article and Find Full Text PDFOverdose of carbon dioxide gas (CO₂) is a common euthanasia method for rodents; however, CO₂ exposure activates nociceptors in rats at concentrations equal to or greater than 37% and is reported to be painful in humans at concentrations equal to or greater than 32.5%. Exposure of rats to CO₂ could cause pain before loss of consciousness.
View Article and Find Full Text PDFThree-dimensional (3D) epigenome remodeling is an important mechanism of gene deregulation in cancer. However, its potential as a target to counteract therapy resistance remains largely unaddressed. Here, we show that epigenetic therapy with decitabine (5-Aza-mC) suppresses tumor growth in xenograft models of pre-clinical metastatic estrogen receptor positive (ER+) breast tumor.
View Article and Find Full Text PDFJ Am Assoc Lab Anim Sci
November 2023
Exposure to CO₂ gas is a common rodent euthanasia method. CO₂ activates nociceptors in rats and is painful to humans at concentrations equal to or greater than 32.5% The concentration of CO₂ at which rodents become unconsciousness is inadequately defined.
View Article and Find Full Text PDFBackground: FURVA, a randomised, double-blind Phase II trial, investigated whether the addition of vandetanib to fulvestrant improved progression-free survival (PFS) in patients with an aromatase inhibitor(AI)-resistant advanced breast cancer.
Methods: Postmenopausal women with oestrogen receptor-positive (ER+ve)/HER2-negative advanced breast cancer, who experienced disease progression on an AI, were randomised (1:1) to fulvestrant 500 mg (Q28) with vandetanib 300 mg od (f + v) or placebo (f + p) until disease progression or discontinuation. The primary endpoint was PFS; secondary endpoints included overall survival (OS) and the influence of REarranged during Transfection (RET) signalling on outcomes.
Aromatase (CYP19A1) inhibitors are the mainstay therapeutics for the treatment of hormone dependant breast cancer, which accounts for approximately 70% of all breast cancer cases. However, increased resistance to the clinically used aromatase inhibitors, including letrozole and anastrazole, and off target effects, necessitates the development of aromatase inhibitors with improved drug profiles. The development of extended 4th generation pyridine based aromatase inhibitors with dual binding (haem and access channel) is therefore of interest and here we describe the design, synthesis and computational studies.
View Article and Find Full Text PDFThe response to psychological stress can differ depending on the type and duration of the stressor. Acute stress can facilitate a "fight or flight response" and aid survival, whereas chronic long-term stress with the persistent release of stress hormones such as cortisol has been shown to be detrimental to health. We are now beginning to understand how this stress hormone response impacts important processes such as DNA repair and cell proliferation processes in breast cancer.
View Article and Find Full Text PDFOne in every eight women will be diagnosed with breast cancer during their lifetime and approximately 70% of all patients are oestrogen receptor (ER) positive depending upon oestrogen for their growth accounting for third generation aromatase (CYP19A1) inhibitors being the mainstay in the treatment of ER-positive breast cancer. Despite the success of current aromatase inhibitors, acquired resistance occurs after prolonged therapy. Although the precise mechanisms of resistance are not known, lack of cross resistance among aromatase inhibitors drives the need for a newer generation of inhibitors to overcome this resistance alongside minimising toxicity and adverse effects.
View Article and Find Full Text PDFAim: Zinc is a key secondary messenger that can regulate multiple signalling pathways within cancer cells, thus its levels need to be strictly controlled. The Zrt, Irt-like protein (ZIP, SLC39A) family of zinc transporters increase cytosolic zinc from either extracellular or intracellular stores. This study examines the relevance of zinc transporters ZIP7 and ZIP6 as therapeutic targets in tamoxifen resistant (TAMR) breast cancer.
View Article and Find Full Text PDFIntratumoral heterogeneity is caused by genomic instability and phenotypic plasticity, but how these features co-evolve remains unclear. SOX10 is a neural crest stem cell (NCSC) specifier and candidate mediator of phenotypic plasticity in cancer. We investigated its relevance in breast cancer by immunophenotyping 21 normal breast and 1860 tumour samples.
View Article and Find Full Text PDFZinc has been known to be essential for cell division for over 40 years but the molecular pathways involved remain elusive. Cellular zinc import across biological membranes necessitates the help of zinc transporters such as the SLC39A family of ZIP transporters. We have discovered a molecular process that explains why zinc is required for cell division, involving two highly regulated zinc transporters, as a heteromer of ZIP6 and ZIP10, providing the means of cellular zinc entry at a specific time of the cell cycle that initiates a pathway resulting in the onset of mitosis.
View Article and Find Full Text PDFEndocrine therapy resistance frequently develops in estrogen receptor positive (ER+) breast cancer, but the underlying molecular mechanisms are largely unknown. Here, we show that 3-dimensional (3D) chromatin interactions both within and between topologically associating domains (TADs) frequently change in ER+ endocrine-resistant breast cancer cells and that the differential interactions are enriched for resistance-associated genetic variants at CTCF-bound anchors. Ectopic chromatin interactions are preferentially enriched at active enhancers and promoters and ER binding sites, and are associated with altered expression of ER-regulated genes, consistent with dynamic remodelling of ER pathways accompanying the development of endocrine resistance.
View Article and Find Full Text PDFZIP7, a member of the ZIP family of zinc importers, resides on the endoplasmic reticulum membrane and transports zinc from intracellular stores to the cytoplasm after activation by CK2 phosphorylation on two serine residues (S275 and S276). ZIP7 is known to be required for the growth of anti-hormone resistant breast cancer models, especially those with acquired tamoxifen resistance developed from MCF-7. Using our new pSSZIP7 antibody which only recognises activated ZIP7 (pZIP7), we have demonstrated that the hyperactivation of ZIP7 is prevalent in tamoxifen-resistant breast cancer cells.
View Article and Find Full Text PDFDespite the effectiveness of endocrine therapies to treat estrogen receptor-positive (ER+) breast tumours, two thirds of patients will eventually relapse due to de novo or acquired resistance to these agents. Cancer Stem-like Cells (CSCs), a rare cell population within the tumour, accumulate after anti-estrogen treatments and are likely to contribute to their failure. Here we studied the role of p21-activated kinase 4 (PAK4) as a promising target to overcome endocrine resistance and disease progression in ER + breast cancers.
View Article and Find Full Text PDFBackground: MicroRNAs are potent post-transcriptional regulators involved in all hallmarks of cancer. Mir-196a is transcribed from two loci and has been implicated in a wide range of developmental and pathogenic processes, with targets including Hox, Fox, Cdk inhibitors and annexins. Genetic variants and altered expression of MIR196A are associated with risk and progression of multiple cancers including breast cancer, however little is known about the regulation of the genes encoding this miRNA, nor the impact of variants therein.
View Article and Find Full Text PDFAfter the publication of this work [1], an error was noticed in Fig. 2b and Fig. 4b as well as Fig.
View Article and Find Full Text PDFOne third of ER-positive breast cancer patients who initially respond to endocrine therapy become resistant to treatment. Such treatment failure is associated with poor prognosis and remains an area of unmet clinical need. Here, we identify a specific posttranslational modification that occurs during endocrine resistance and which results in tumor susceptibility to the apoptosis-inducer TRAIL.
View Article and Find Full Text PDFWhile endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers.
View Article and Find Full Text PDFPredicting response to endocrine therapy and survival in oestrogen receptor positive breast cancer is a significant clinical challenge and novel prognostic biomarkers are needed. Long-range regulators of gene expression are emerging as promising biomarkers and therapeutic targets for human diseases, so we have explored the potential of distal enhancer elements of non-coding RNAs in the prognostication of breast cancer survival. HOTAIR is a long non-coding RNA that is overexpressed, promotes metastasis and is predictive of decreased survival.
View Article and Find Full Text PDFBackground And Purpose: Small conductance calcium-activated potassium (KCa 2.x) channels have a widely accepted canonical function in regulating cellular excitability. In this study, we address a potential non-canonical function of KCa 2.
View Article and Find Full Text PDFBreast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts.
View Article and Find Full Text PDFWe report the first study of the biological effect of fulvestrant on ER positive clinical breast cancer using sequential biopsies through to progression. Thirty-two locally/systemically advanced breast cancers treated with first-line fulvestrant (250 mg/month) were biopsied at therapy initiation, 6 weeks, 6 months and progression and immunohistochemically-analyzed for Ki67, ER, EGFR and HER2 expression/signaling activity. This series showed good fulvestrant responses (duration of response [DoR] = 25.
View Article and Find Full Text PDF