The activity of neurons in the visual cortex is often characterized by tuning curves, which are thought to be shaped by Hebbian plasticity during development and sensory experience. This leads to the prediction that neural circuits should be organized such that neurons with similar functional preference are connected with stronger weights. In support of this idea, previous experimental and theoretical work have provided evidence for a model of the visual cortex characterized by such functional subnetworks.
View Article and Find Full Text PDFExcitatory synapses are typically described as single synaptic boutons (SSBs), where one presynaptic bouton contacts a single postsynaptic spine. Using serial section block-face scanning electron microscopy, we found that this textbook definition of the synapse does not fully apply to the CA1 region of the hippocampus. Roughly half of all excitatory synapses in the stratum oriens involved multi-synaptic boutons (MSBs), where a single presynaptic bouton containing multiple active zones contacted many postsynaptic spines (from 2 to 7) on the basal dendrites of different cells.
View Article and Find Full Text PDFBrain networks store new memories using functional and structural synaptic plasticity. Memory formation is generally attributed to Hebbian plasticity, while homeostatic plasticity is thought to have an ancillary role in stabilizing network dynamics. Here we report that homeostatic plasticity alone can also lead to the formation of stable memories.
View Article and Find Full Text PDFCell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have previously shown that assemblies can be formed in networks with multiple types of plasticity. But how exactly they are formed and how they encode information is yet to be fully understood.
View Article and Find Full Text PDFPlasticity is the mechanistic basis of development, aging, learning, and memory, both in healthy and pathological brains. Structural plasticity is rarely accounted for in computational network models due to a lack of insight into the underlying neuronal mechanisms and processes. Little is known about how the rewiring of networks is dynamically regulated.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a variant of noninvasive neuromodulation, which promises treatment for brain diseases like major depressive disorder. In experiments, long-lasting aftereffects were observed, suggesting that persistent plastic changes are induced. The mechanism underlying the emergence of lasting aftereffects, however, remains elusive.
View Article and Find Full Text PDFCorrelation-based Hebbian plasticity is thought to shape neuronal connectivity during development and learning, whereas homeostatic plasticity would stabilize network activity. Here we investigate another, new aspect of this dichotomy: Can Hebbian associative properties also emerge as a network effect from a plasticity rule based on homeostatic principles on the neuronal level? To address this question, we simulated a recurrent network of leaky integrate-and-fire neurons, in which excitatory connections are subject to a structural plasticity rule based on firing rate homeostasis. We show that a subgroup of neurons develop stronger within-group connectivity as a consequence of receiving stronger external stimulation.
View Article and Find Full Text PDF