Publications by authors named "Julia Foght"

Methane (CH) emissions are a factor in climate change; in addition, CH production may affect reclamation of fluid fine tailings (FFT) in tailings ponds, and end-pit lakes (EPLs). In laboratory cultures, we investigated the effect of crystalline iron mineral (magnetite) on CH production from the biodegradation of hydrocarbons added to FFT collected from methanogenically more and less active sites in a demonstration EPL. Magnetite enhanced CH production from both sites, having a greater effect in more active FFT, where it increased the CH production rate as much as 48% (from 6.

View Article and Find Full Text PDF

Management of growing volumes of fluid fine tailings (FFT) is a significant challenge for oil sands industry. A potential alternative non-aqueous solvent extraction (NAE) process uses cycloalkane solvent such as cyclohexane or cyclopentane with very little water and generates smaller volumes of 'dry' solids (NAES) with residual solvent. Here we investigate remediation of NAES in a simulated bench-scale upland reclamation scenario.

View Article and Find Full Text PDF

-Alkanes, a major fraction of the solvents used in bitumen extraction from oil sand ores, are slow to biodegrade in anaerobic tailings ponds. We investigated methanogenic biodegradation of -alkane mixtures comprising either three (2-methylbutane, 2-methylpentane, 3-methylpentane) or five (2-methylbutane, 2-methylpentane, 2-methylhexane, 2-methylheptane, 2-methyloctane) -alkanes representing paraffinic and naphtha solvents, respectively. Mature fine tailings (MFT) collected from two tailings ponds, having different residual solvents (paraffinic solvent in Canadian Natural Upgrading Limited (CNUL) and naphtha in Canadian Natural Resources Limited (CNRL)), were amended separately with the two mixtures and incubated in microcosms for ~1600 d.

View Article and Find Full Text PDF

Microbes indigenous to oil sands tailings ponds methanogenically biodegrade certain hydrocarbons, including n-alkanes and monoaromatics, whereas other hydrocarbons such as iso- and cycloalkanes are more recalcitrant. We tested the susceptibility of iso- and cycloalkanes to methanogenic biodegradation by incubating them with mature fine tailings (MFT) collected from two depths (6 and 31 m below surface) of a tailings pond, representing different lengths of exposure to hydrocarbons. A mixture of five iso-alkanes and three cycloalkanes was incubated with MFT for 1700 d.

View Article and Find Full Text PDF

Microbial metabolism of fugitive hydrocarbons produces greenhouse gas (GHG) emissions from oil sands tailings ponds (OSTP) and end pit lakes (EPL) that retain fluid tailings from surface mining of oil sands ores. Predicting GHG production, particularly methane (CH), would help oil sands operators mitigate tailings emissions and may assist regulators evaluating the trajectory of reclamation scenarios. Using empirical datasets from laboratory incubation of OSTP sediments with pertinent hydrocarbons, we developed a stoichiometric model for CH generation by indigenous microbes.

View Article and Find Full Text PDF

The genus Mesotoga, the only described mesophilic Thermotogae lineage, is common in mesothermic anaerobic hydrocarbon-rich environments. Besides mesophily, Mesotoga displays lineage-specific phenotypes, such as no or little H production and dependence on sulfur-compound reduction, which may influence its ecological role. We used comparative genomics of 18 Mesotoga strains (pairwise 16S rRNA identity >99%) and a transcriptome of M.

View Article and Find Full Text PDF

Syntrophy among and facilitates the anaerobic degradation of organic compounds to CH and CO. Particularly during aliphatic and aromatic hydrocarbon mineralization, as in the case of crude oil reservoirs and petroleum-contaminated sediments, metabolic interactions between obligate mutualistic microbial partners are of central importance. Using micromanipulation combined with shotgun metagenomic approaches, we describe the genomes of complex consortia within short-chain alkane-degrading cultures operating under methanogenic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Temperature is crucial for defining an ecological niche, with most organisms thriving within ~30 °C, while the bacterium Kosmotoga olearia can live within a unique range of 20-79 °C.
  • Research showed that K. olearia expressed different genes in response to temperature changes, affecting its cell membrane structure and metabolic functions at various temperatures, particularly highlighting its adaptation mechanisms.
  • Comparative genomic analysis revealed that at lower temperatures, K. olearia increases the copy number of cold response genes, while at high temperatures a significant portion of up-regulated genes remain uncharacterized, suggesting gaps in understanding its high-temperature adaptations.
View Article and Find Full Text PDF

Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions.

View Article and Find Full Text PDF

Tailings ponds in the Athabasca oil sands (Canada) contain fluid wastes, generated by the extraction of bitumen from oil sands ores. Although the autochthonous prokaryotic communities have been relatively well characterized, almost nothing is known about microbial eukaryotes living in the anoxic soft sediments of tailings ponds or in the thin oxic layer of water that covers them. We carried out the first next-generation sequencing study of microbial eukaryotic diversity in oil sands tailings ponds.

View Article and Find Full Text PDF

Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed.

View Article and Find Full Text PDF

Oil sands tailings ponds in northern Alberta, Canada have been producing biogenic gases via microbial metabolism of hydrocarbons for decades. Persistent methanogenic activity in tailings ponds without any known replenishment of nutrients such as fixed nitrogen (N) persuaded us to investigate whether N2 fixation or polyacrylamide (PAM; used as a tailings flocculant) could serve as N sources. Cultures comprising mature fine tailings (MFT) plus methanogenic medium supplemented with or deficient in fixed N were incubated under an N2 headspace.

View Article and Find Full Text PDF

Oil sands tailings ponds harbor diverse anaerobic microbial communities capable of methanogenic biodegradation of solvent hydrocarbons entrained in the tailings. Mature fine tailings (MFT) from two operators (Albian and CNRL) that use different extraction solvents were incubated with mixtures of either two (n-pentane and n-hexane) or four (n-pentane, n-hexane, n-octane and n-decane) n-alkanes under methanogenic conditions for ~600 d. Microbes in Albian MFT began methane production by ~80 d, achieving complete depletion of n-pentane and n-hexane in the two-alkane mixture and their preferential biodegradation in the four-alkane mixture.

View Article and Find Full Text PDF

iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha.

View Article and Find Full Text PDF

Oil sands tailings ponds are anaerobic repositories of fluid wastes produced by extraction of bitumen from oil sands ores. Diverse indigenous microbiota biodegrade hydrocarbons (including toluene) in situ, producing methane, carbon dioxide and/or hydrogen sulfide, depending on electron acceptor availability. Stable-isotope probing of cultures enriched from tailings associated specific taxa and functional genes to (13)C6- and (12)C7-toluene degradation under methanogenic and sulfate-reducing conditions.

View Article and Find Full Text PDF

A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites.

View Article and Find Full Text PDF

Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens.

View Article and Find Full Text PDF

Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment.

View Article and Find Full Text PDF

The draft genome of a member of the bacterial family Desulfobulbaceae (phylum Deltaproteobacteria) was assembled from the metagenome of a sulfidogenic [(13)C6]toluene-degrading enrichment culture. The "Desulfobulbaceae bacterium Tol-SR" genome is distinguished from related, previously sequenced genomes by suites of genes associated with anaerobic toluene metabolism, including bss, bbs, and bam.

View Article and Find Full Text PDF

A draft Desulfosporosinus genome was assembled from the metagenome of a methanogenic [(13)C6]toluene-degrading community. The Desulfosporosinus sp. strain Tol-M genome is distinguished from that of previously published Desulfosporosinus strain by containing bss, bbs, and bam genes encoding enzymes for anaerobic biodegradation of monoaromatic hydrocarbons and lacking dsrAB genes for dissimilatory sulfate reduction.

View Article and Find Full Text PDF

Two draft genomes affiliated with Smithella spp. were obtained from a methanogenic alkane-degrading enrichment culture by single-cell sorting and metagenome contig binning, and a third was obtained by single-cell sorting of oil field produced water. Two genomes contained putative assABC genes encoding alkylsuccinate synthase, indicating genetic potential for fumarate activation of alkanes.

View Article and Find Full Text PDF

Iso-alkanes comprise a substantial proportion of petroleum and refined products that impact the environment, but their fate is cryptic under methanogenic conditions. We investigated methanogenic biodegradation of C7 and C8 iso-alkanes found in naphtha, specifically 2-methylhexane, 3-methylhexane, 2-methylheptane, 4-methylheptane and 3-ethylhexane. These were incubated as a mixture or individually with enrichment cultures derived from oil sands tailings ponds that generate methane from naphtha components; substrate depletion and methane production were monitored for up to 663 days.

View Article and Find Full Text PDF

Draft genome sequences of two Campylobacterales (Sulfurospirillum sp. strain SCADC and Sulfuricurvum sp. strain MLSB [Mildred Lake Settling Basin]) were obtained by taxonomic binning of metagenomes originating from an oil sands tailings pond.

View Article and Find Full Text PDF

Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation.

View Article and Find Full Text PDF