Multiple sclerosis (MS), namely the phenotype of the relapsing-remitting form, is the most common white matter disease and is mostly characterized by demyelination and inflammation, which lead to neurodegeneration and cognitive decline. Its diagnosis and monitoring are performed through conventional structural MRI, in which T2-hyperintense lesions can be identified, but this technique lacks sensitivity and specificity, mainly in detecting damage to normal appearing tissues. Models of diffusion-weighted MRI such as diffusion-tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) allow to uncover microstructural abnormalities that occur in MS, mainly in normal appearing tissues such as the normal appearing white matter (NAWM), which allows to overcome limitations of conventional MRI.
View Article and Find Full Text PDFIntroduction: Functional MRI (fMRI) is commonly used for understanding brain organization and connectivity abnormalities in neurological conditions, and in particular in multiple sclerosis (MS). However, head motion degrades fMRI data quality and influences all image-derived metrics. Persistent controversies regarding the best correction strategy motivates a systematic comparison, including methods such as scrubbing and volume interpolation, to find optimal correction models, particularly in studies with clinical populations prone to characterize by high motion.
View Article and Find Full Text PDFReconstructing EEG sources involves a complex pipeline, with the inverse problem being the most challenging. Multiple inversion algorithms are being continuously developed, aiming to tackle the non-uniqueness of this problem, which has been shown to be partially circumvented by including prior information in the inverse models. Despite a few efforts, there are still current and persistent controversies regarding the inversion algorithm of choice and the optimal set of spatial priors to be included in the inversion models.
View Article and Find Full Text PDF