Publications by authors named "Julia E Stawarz"

After leaving the Sun's corona, the solar wind continues to accelerate and cools, but more slowly than expected for a freely expanding adiabatic gas. Alfvén waves are perturbations of the interplanetary magnetic field that transport energy. We use in situ measurements from the Parker Solar Probe and Solar Orbiter spacecraft to investigate a stream of solar wind as it traverses the inner heliosphere.

View Article and Find Full Text PDF

Anisotropic electron heating during electron-only magnetic reconnection with a large guide magnetic field is directly measured in a laboratory plasma through in situ measurements of electron velocity distribution functions. Electron heating preferentially parallel to the magnetic field is localized to one separatrix, and anisotropies of 1.5 are measured.

View Article and Find Full Text PDF
Article Synopsis
  • The study of electron scales is crucial for understanding plasma behavior in space and astrophysics, specifically in terms of plasma turbulence and energy transfer.
  • There is a significant gap in knowledge regarding how plasma electrons contribute to heat flux and its regulation, making it a key area of research.
  • This White Paper outlines important scientific questions related to electron processes and proposes new space missions to address these challenges in the fields of space physics and astrophysics.
View Article and Find Full Text PDF

The structure of the current sheet along the Magnetospheric Multiscale (MMS) orbit is examined during the 11 July 2017 Electron Diffusion Region (EDR) event. The location of MMS relative to the X-line is deduced and used to obtain the spatial changes in the electron parameters. The electron velocity gradient values are used to estimate the reconnection electric field sustained by nongyrotropic pressure.

View Article and Find Full Text PDF

Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here we present observations of plasma fluctuations in low- turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath.

View Article and Find Full Text PDF

Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state.

View Article and Find Full Text PDF

We review some aspects of solar wind turbulence with an emphasis on the ability of the turbulence to account for the observed heating of the solar wind. Particular attention is paid to the use of structure functions in computing energy cascade rates and their general agreement with the measured thermal proton heating. We then examine the use of 1 h data samples that are comparable in length to the correlation length for the fluctuations to obtain insights into local inertial range dynamics and find evidence for intermittency in the computed energy cascade rates.

View Article and Find Full Text PDF

Using direct numerical simulations with grids of up to 512(3) points, we investigate long-time properties of three-dimensional magnetohydrodynamic turbulence in the absence of forcing and examine in particular the roles played by the quadratic invariants of the system and the symmetries of the initial configurations. We observe that when sufficient accuracy is used, initial conditions with a high degree of symmetries, as in the absence of helicity, do not travel through parameter space over time, whereas by perturbing these solutions either explicitly or implicitly using, for example, single precision for long times, the flows depart from their original behavior and can either become strongly helical or have a strong alignment between the velocity and the magnetic field. When the symmetries are broken, the flows evolve towards different end states, as already predicted by statistical arguments for nondissipative systems with the addition of an energy minimization principle.

View Article and Find Full Text PDF