Publications by authors named "Julia Drebes"

Infections caused by the methicillin-resistant Staphylococcus aureus (MRSA) are today known to be a substantial threat for global health. Emerging multi-drug resistant bacteria have created a substantial need to identify and discover new drug targets and to develop novel strategies to treat bacterial infections. A promising and so far untapped antibiotic target is the biosynthesis of vitamin B1 (thiamin).

View Article and Find Full Text PDF

Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S.

View Article and Find Full Text PDF

Thiaminase type II (TenA) catalyzes the deamination of aminopyrimidines, including the cleavage of thiamine to 4-amino-5-hydroxymethyl-2-methylpyrimidine and 5-(2-hydroxyethyl)-4-methylthiazole in the metabolism of thiamine (vitamin B1), in Staphylococcus aureus (Sa). SaTenA was crystallized by the vapour-diffusion method and the resulting crystal diffracted to 2.6 Å resolution usng synchrotron radiation.

View Article and Find Full Text PDF

Distribution of selenium (Se) within the mammalian body is mediated by SePP (selenoprotein P), an Se-rich glycoprotein secreted by hepatocytes. Genetic and biochemical evidence indicate that the endocytic receptors ApoER2 (apolipoprotein E receptor 2) and megalin mediate tissue-specific SePP uptake. In the present study megalin-mutant mice were fed on diets containing adequate (0.

View Article and Find Full Text PDF