Publications by authors named "Julia Doroszkiewicz"

Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation.

View Article and Find Full Text PDF

Recent investigations implicate neuroinflammatory changes, including astrocyte and microglia activation, as crucial in the progression of Alzheimer's disease (AD) Thus, we compared selected proteins reflecting neuroinflammatory processes to establish their connection to AD pathologies. Our study, encompassing 80 subjects with ( = 42) AD, ( = 18) mild cognitive impairment (MCI) and ( = 20) non-demented controls compares the clinical potential of tested molecules. Using antibody-based methods, we assessed concentrations of NGAL, CXCL-11, sTREM1, and sTREM2 in cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Trace elements and metals play critical roles in the normal functioning of the central nervous system (CNS), and their dysregulation has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In a healthy CNS, zinc, copper, iron, and manganese play vital roles as enzyme cofactors, supporting neurotransmission, cellular metabolism, and antioxidant defense. Imbalances in these trace elements can lead to oxidative stress, protein aggregation, and mitochondrial dysfunction, thereby contributing to neurodegeneration.

View Article and Find Full Text PDF

In addition to amyloid and tau pathology in the central nervous system (CNS), inflammatory processes and synaptic dysfunction are highly important mechanisms involved in the development and progression of dementia diseases. In the present study, we conducted a comparative analysis of selected pro-inflammatory proteins in the CNS with proteins reflecting synaptic damage and core biomarkers in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). To our knowledge, no studies have yet compared CXCL12 and CX3CL1 with markers of synaptic disturbance in cerebrospinal fluid (CSF) in the early stages of dementia.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a very common neurodegenerative disorder characterized by the gradual loss of neurons and extracellular amyloid-peptide buildup. There is compelling evidence that the disease process depends on neuroinflammatory alterations, such as the activation of astrocytes and microglia cells. A transmembrane glycoprotein known as glycoprotein nonmetastatic melanoma protein B (GPNMB) plays a neuroprotective role during the development of neurodegeneration.

View Article and Find Full Text PDF

Alzheimer's disease is the most common cause of dementia in the world. Lack of an established pathology makes it difficult to develop suitable approaches and treatment for the disease. Besides known hallmarks, including amyloid β peptides cumulating in plaques and hyperphosphorylated tau forming NFTs, inflammation also plays an important role, with known connections to the diet.

View Article and Find Full Text PDF

Despite the fact that Alzheimer's disease (AD) is the most common cause of dementia, after many years of research regarding this disease, there is no casual treatment. Regardless of the serious public health threat it poses, only five medical treatments for Alzheimer's disease have been authorized, and they only control symptoms rather than changing the course of the disease. Numerous clinical trials of single-agent therapy did not slow the development of disease or improve symptoms when compared to placebo.

View Article and Find Full Text PDF

Background: Given the significant role of neurodegeneration in the progression of multiple sclerosis (MS) and insufficient therapies, there is an urgent need to better understand this pathology and to find new biomarkers that could provide important insight into the biological mechanisms of the disease. Thus, the present study aimed to compare different neurodegeneration and axonal dysfunction biomarkers in MS and verify their potential clinical usefulness.

Methods: A total of 59 patients, who underwent CSF analysis during their diagnostics, were enrolled in the study.

View Article and Find Full Text PDF

The degeneration and dysfunction of neurons are key features of neurodegenerative diseases (NDs). Currently, one of the main challenges facing researchers and clinicians is the ability to obtain reliable diagnostic tools that will allow for the diagnosis of NDs as early as possible and the detection of neuronal dysfunction, preferably in the presymptomatic stage. Additionally, better tools for assessing disease progression in this group of disorders are also being sought.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive and deadly neurodegenerative disorder and one of the most common causes of dementia globally. Current, insufficiently sensitive and specific methods of early diagnosing and monitoring this disease prompt a search for new tools. Numerous literature data have indicated that the pathogenesis of Alzheimer's disease (AD) is not limited to the neuronal compartment but involves various immunological mechanisms.

View Article and Find Full Text PDF

The gut microbiome has attracted increasing attention from researchers in recent years. The microbiota can have a specific and complex cross-talk with the host, particularly with the central nervous system (CNS), creating the so-called "gut-brain axis". Communication between the gut, intestinal microbiota, and the brain involves the secretion of various metabolites such as short-chain fatty acids (SCFAs), structural components of bacteria, and signaling molecules.

View Article and Find Full Text PDF