The synthesis, absolute stereochemical configuration, complete biological characterization, mechanism of action and resistance, and pharmacokinetic properties of ( S)-(-)-acidomycin are described. Acidomycin possesses promising antitubercular activity against a series of contemporary drug susceptible and drug-resistant M. tuberculosis strains (minimum inhibitory concentrations (MICs) = 0.
View Article and Find Full Text PDFBiotin synthase (BioB) catalyzes the oxidative insertion of a sulfur atom between the C6 methylene and the C9 methyl positions in dethiobiotin. The enzyme couples oxidation of each carbon position to reduction of the S-adenosyl-l-methionine (SAM) sulfonium center, generating 5'-deoxyadenosine and l-methionine, products that are characteristic of enzymes from the radical SAM superfamily. In bacteria, biotin biosynthesis is tightly regulated by the dual-function BirA repressor/holocarboxylase synthetase, resulting in very low levels of all biotin biosynthetic enzymes such that activity-based purification of BioB from the native organism is virtually impossible.
View Article and Find Full Text PDF