Publications by authors named "Julia D Burman"

Among the recently discovered Staphylococcus aureus immune evasion proteins, Sbi is unique in its ability to interact with components of both the adaptive and innate immune systems of the host. Sbi domains I and II (Sbi-I and Sbi-II) bind IgG. Sbi domain IV (residues 198-266) binds the central complement protein C3.

View Article and Find Full Text PDF

Staphylococcal immunoglobulin-binding protein, Sbi, is a 436-residue protein produced by many strains of Staphylococcus aureus. It was previously characterized as being cell surface-associated and having binding capacity for human IgG and beta(2)-glycoprotein I. Here we show using small angle x-ray scattering that the proposed extracellular region of Sbi (Sbi-E) is an elongated molecule consisting of four globular domains, two immunoglobulin-binding domains (I and II) and two novel domains (III and IV).

View Article and Find Full Text PDF

The evasion of the host immune response is central to the pathogenicity of Staphylococcus aureus, and is facilitated by the ability of the cell wall-associated protein A (SpA) to bind immunoglobulin G Fc fragments, thereby impeding phacocytosis and classical pathway complement fixation. SpA also acts as a B-cell superantigen through interactions with the heavy-chain variable part of Fab fragments, and sequesters immunoglobulins by forming large insoluble immune complexes with human IgG. Here we show that the formation of insoluble immune complexes is mediated by the binding of (VH3+) Fab fragments in addition to Fc, and that SpA forms soluble complexes with IgG Fc fragments.

View Article and Find Full Text PDF

Background: The YjgF/YER057c/UK114 family of proteins is widespread in nature, but has as yet no clearly defined biological role. Members of the family exist as homotrimers and are characterised by intersubunit clefts that are delineated by well-conserved residues; these sites are likely to be of functional significance, yet catalytic activity has never been detected for any member of this family. The gene encoding the TdcF protein of E.

View Article and Find Full Text PDF

The anaerobically inducible L-serine dehydratase, TdcG, from Escherichia coli was characterized. Based on UV-visible spectroscopy, iron and labile sulfide analyses, the homodimeric enzyme is proposed to have two oxygen-labile [4Fe-4S]2+ clusters. Anaerobically isolated dimeric TdcG had a kcat of 544 s(-1) and an apparent KM for L-serine of 4.

View Article and Find Full Text PDF
Article Synopsis
  • Crystals of the hypothetical protein TdcF from E. coli were successfully grown using vapour diffusion methods.
  • The protein crystallized in the P2(1)2(1)2 space group, with specific unit-cell dimensions measured at a = 72.67, b = 86.22, c = 62.62 Å.
  • Native X-ray data was collected at a resolution of 2.35 Å from a single crystal at 100 K, suggesting the presence of a trimer in the asymmetric unit, confirmed through molecular-replacement with the YjgF trimer structure.
View Article and Find Full Text PDF