Many genetic markers are known to distinguish tumor cells from normal. Genetic lesions found at disease onset often belong to a predominant tumor clone, and further observation makes it possible to assess the fate of this clone during therapy. However, minor clones escape monitoring and become unidentified, leading to relapses.
View Article and Find Full Text PDFPrimary mediastinal B-cell lymphoma (PMBCL) is the only non-Hodgkin's lymphoma variant responding to immune checkpoint inhibitor (ICI) therapy, approximately in half of the cases; however, no molecular markers predicting a response to ICI therapy in PMBCL have been described so far. In this study, we assessed the incidence of the loss of heterozygosity (LOH), elevated microsatellite alteration at selected tetranucleotides (EMAST), and microsatellite instability (MSI) in the tumor genomes of 72 patients with PMBCL undergoing high-dose chemotherapy treatment at the National Research Center for Hematology (Moscow, Russia). Tumor DNA was isolated from biopsy samples taken at diagnosis.
View Article and Find Full Text PDFDespite the introduction of new technologies in molecular diagnostics, one should not underestimate the traditional routine methods for studying tumor DNA. Here we present the evidence that short tandem repeat (STR) profiling of tumor DNA relative to DNA from healthy cells might identify chromosomal aberrations affecting therapy outcome. Tumor STR profiles of 87 adult patients with de novo Ph-negative ALL (40 B-ALL, 43 T-ALL, 4 mixed phenotype acute leukemia (MPAL)) treated according to the "RALL-2016" regimen were analyzed.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is a rare disease usually treated with intensive, high-dose consolidation chemotherapy followed by an allotransplant in a substantial number of patients. The data of the RALL-2009 study on 125 adult T-ALL patients suggest that similar total chemotherapy doses given less intensively over a longer interval without interruptions and with an auto- rather than an allotransplant produce outcomes like current more intensive protocols and an allotransplant: 9-year cumulative incidence of relapse (CIR), leukemia-free survival (LFS), and survival were 24% (95% CI 16-33%), 70% (95% CI 59-79%) and 62% (95% CI 51-72%). In a landmark analysis, subjects achieving a complete remission and receiving an autotransplant had a lower 9-year CIR (9% [95% CI 2-22%] vs.
View Article and Find Full Text PDF