An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe dopamine D5 receptor (D5R) is a Gα-coupled dopamine receptor belonging to the dopamine D1-like receptor family. Together with the dopamine D2 receptor it is highly expressed in striatal cholinergic interneurons and therefore is poised to be a positive regulator of cholinergic activity in response to L-DOPA in the dopamine-depleted parkinsonian brain. Tonically active cholinergic interneurons become dysregulated during chronic L-DOPA administration and participate in the expression of L-DOPA induced dyskinesia.
View Article and Find Full Text PDFInt J Mol Sci
November 2018
The serotonin 4 receptor, 5-HT₄R, represents one of seven different serotonin receptor families and is implicated in a variety of physiological functions and their pathophysiological variants, such as mood and depression or anxiety, food intake and obesity or anorexia, or memory and memory loss in Alzheimer's disease. Its central nervous system expression pattern in the forebrain, in particular in caudate putamen, the hippocampus and to lesser extent in the cortex, predispose it for a role in executive function and reward-related actions. In rodents, regional overexpression or knockdown in the prefrontal cortex or the nucleus accumbens of 5-HT₄R was shown to impact mood and depression-like phenotypes, food intake and hypophagia; however, whether expression changes are causally involved in the etiology of such disorders is not clear.
View Article and Find Full Text PDFWe have previously shown that casein kinase 2 (CK2) negatively regulates dopamine D1 and adenosine A receptor signaling in the striatum. Ablation of CK2 in D1 receptor-positive striatal neurons caused enhanced locomotion and exploration at baseline, whereas CK2 ablation in D2 receptor-positive neurons caused increased locomotion after treatment with A antagonist, caffeine. Because both, D1 and A receptors, play major roles in the cellular responses to l-DOPA in the striatum, these findings prompted us to examine the impact of CK2 ablation on the effects of l-DOPA treatment in the unilateral 6-OHDA lesioned mouse model of Parkinson's disease.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2017
Protein kinase CK2 has received a surge of attention in recent years due to the evidence of its overexpression in a variety of solid tumors and multiple myelomas as well as its participation in cell survival pathways. CK2 is also upregulated in the most prevalent and aggressive cancer of brain tissue, glioblastoma multiforme, and in preclinical models, pharmacological inhibition of the kinase has proven successful in reducing tumor size and animal mortality. CK2 is highly expressed in the mammalian brain and has many bona fide substrates that are crucial in neuronal or glial homeostasis and signaling processes across synapses.
View Article and Find Full Text PDF