Publications by authors named "Julia C Young"

Nuclear transporter Importin (Imp, Ipo) 13 is known to transport various mammalian cargoes into/out of the nucleus, but its role in directing cell-fate is unclear. Here we examine the role of Imp13 in the maintenance of pluripotency and differentiation of embryonic stem cells (ESCs) for the first time, using an embryonic body (EB)-based model. When induced to differentiate, Ipo13 ESCs displayed slow proliferation, reduced EB size, and lower expression of the proliferation marker KI67, concomitant with an increase in the number of TUNEL nuclei compared to wildtype ESCs.

View Article and Find Full Text PDF

Study Question: Is WNT signalling functional in normal and/or neoplastic human male germ cells?

Summary Answer: Regulated WNT signalling component synthesis in human testes indicates that WNT pathway function changes during normal spermatogenesis and is active in testicular germ cell tumours (TGCTs), and that WNT pathway blockade may restrict seminoma growth and migration.

What Is Known Already: Regulated WNT signalling governs many developmental processes, including those affecting male fertility during early germ cell development at embryonic and adult (spermatogonial) ages in mice. In addition, although many cancers arise from WNT signalling alterations, the functional relevance and WNT pathway components in TGCT, including germ cell neoplasia in situ (GCNIS), are unknown.

View Article and Find Full Text PDF

Disrupted fetal germline development underpins testicular germ cell neoplasia, which is increasing worldwide. The complex signaling milieu during normal testis development includes TGFβ superfamily ligands; this study tests the hypothesis that, activin A, a TGFβ superfamily member, can influence gonocyte development. The human seminoma-derived cell line, TCam-2, a model of fetal gonocytes, was cultured with activin A (1.

View Article and Find Full Text PDF

Background: Snail transcription factors mediate key cellular transitions in many developmental processes, including spermatogenesis, and their production can be regulated by TGF-β superfamily signalling. SNAI1 and SNAI2 support many cancers of epithelial origin. Their functional relevance and potential regulation by TGF-β superfamily ligands in germ cell neoplasia are unknown.

View Article and Find Full Text PDF

Activin A promotes fetal mouse testis development, including driving Sertoli cell proliferation and cord morphogenesis, but its mechanisms of action are undefined. We performed ribonucleic acid sequencing (RNA-seq) on testicular somatic cells from fetal activin A-deficient mice (Inhba KO) and wildtype littermates at embryonic day (E) E13.5 and E15.

View Article and Find Full Text PDF

Expression profiles and subcellular localisations of core Drosophila behaviour/human splicing (DBHS) proteins (PSPC1, SFPQ and NONO) and NEAT1, a long noncoding RNA (lncRNA), are investigated in developing and adult mouse testes. Core DBHS proteins are markers for the distinct subnuclear domain termed paraspeckles, while a long NEAT1 isoform scaffold facilitates paraspeckle nucleation. Paraspeckles contain many proteins (>40) and are broadly involved in RNA metabolism, including transcriptional regulation by protein sequestration, nuclear retention of A-to-I edited RNA transcripts to regulate translation and promoting survival during cellular stress.

View Article and Find Full Text PDF

The practical aspect of human developmental biology education is often limited to the observation and use of animal models to illustrate developmental anatomy. This is due in part to the difficulty of accessing human embryonic and fetal specimens, and the sensitivity inherent to presenting these specimens as teaching materials. This report presents a new approach using three-dimensional (3D) printed replicas of actual human materials in practical classes, thus allowing for the inclusion of accurate examples of human developmental anatomy in the educational context.

View Article and Find Full Text PDF

The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors.

View Article and Find Full Text PDF

Importin proteins were originally characterized for their central role in protein transport through the nuclear pores, the only intracellular entry to the nucleus. This vital function must be tightly regulated to control access by transcription factors and other nuclear proteins to genomic DNA, to achieve appropriate modulation of cellular behaviors affecting cell fate. Importin-mediated nucleocytoplasmic transport relies on their specific recognition of cargoes, with each importin binding to distinct and overlapping protein subsets.

View Article and Find Full Text PDF

The importance of Wnt signaling for postnatal testis function has been previously studied in several mouse models, with chronic pathway disruption addressing its function in Sertoli cells and in postmeiotic germ cells. While chronic beta-catenin deletion in Sertoli cells does not profoundly affect testis development, new data indicate that Wnt signaling is required at multiple stages of spermatogenesis. We used two mouse models that allow acute disruption of Wnt signaling to explore the importance of regulated Wnt pathway activity for normal germ cell development in adult male mice.

View Article and Find Full Text PDF

The importin (IMP) superfamily of nuclear transport proteins is essential to key developmental pathways, including in the murine testis where expression of the 6 distinct IMPα proteins is highly dynamic. Present predominantly from the spermatocyte stage onwards, IMPα4 is unique in showing a striking nuclear localization, a property we previously found to be linked to maintenance of pluripotency in embryonic stem cells and to the cellular stress response in cultured cells. Here we examine the role of IMPα4 in vivo for the first time using a novel transgenic mouse model in which we overexpress an IMPα4-EGFP fusion protein from the protamine 1 promoter to recapitulate endogenous testicular germ cell IMPα4 expression in spermatids.

View Article and Find Full Text PDF

The cellular repertoire of importin (IMP) proteins that mediates nuclear import of transcription factors and chromatin remodeling agents is critical to processes such as differentiation and transformation. This study identifies for the first time independent roles for specific IMPαs in murine embryonic stem cells (mESCs), showing that mESC differentiation is accompanied by dynamic changes in the levels of transcripts encoding the IMPs, IMPα3, IMPα4, IMPβ1, and IPO5. Of these, only IMPα4 was maintained at higher levels in differentiating mESCs, correlating with the finding that IMPα4 overexpression induced a significant decrease in Oct3/4 protein levels compared to control transfections.

View Article and Find Full Text PDF

Bone morphogenetic protein (BMP) signaling is critical for germline establishment during mouse embryogenesis. To exploit its importance for induction of germline precursors in vitro, mouse embryonic stem cells (mESCs) were cultured as embryoid body (EB) aggregates with combinations of BMP2, BMP4, and BMP8B for 3-10 days. At Day 10 of culture, well-delineated clusters of POU5F1-positive (POU5F1+) cells were visible in BMP4-treated and BMP2-treated EBs; these were rarely detected in untreated and BMP8B-treated cultures.

View Article and Find Full Text PDF

Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated.

View Article and Find Full Text PDF