Publications by authors named "Julia C Redman"

Shigella species Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods with in vitro and in vivo assays to provide new insights into pathogenesis.

View Article and Find Full Text PDF

We report the draft genome sequences of the collection referred to as the Escherichia coli DECA collection, which was assembled to contain representative isolates of the 15 most common diarrheagenic clones in humans (http://shigatox.net/new/). These genomes represent a valuable resource to the community of researchers who examine these enteric pathogens.

View Article and Find Full Text PDF

Shigella flexneri is a Gram-negative pathogen that invades the colonic epithelium. While invasion has been thoroughly investigated, it is unknown how Shigella first attaches to the epithelium. Previous literature suggests that Shigella utilizes adhesins that are induced by environmental signals, including bile salts, encountered in the small intestine prior to invasion.

View Article and Find Full Text PDF

Background: Enteroaggregative Escherichia coli (EAEC) is a cause of epidemic and sporadic diarrhea, yet its role as an enteric pathogen is not fully understood.

Methods: We characterized 121 EAEC strains isolated in 2008 as part of a case-control study of moderate to severe acute diarrhea among children 0-59 months of age in Bamako, Mali. We applied multiplex polymerase chain reaction and comparative genome hybridization to identify potential virulence factors among the EAEC strains, coupled with classification and regression tree modeling to reveal combinations of factors most strongly associated with illness.

View Article and Find Full Text PDF

Background: A large outbreak of diarrhea and the hemolytic-uremic syndrome caused by an unusual serotype of Shiga-toxin-producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin-producing E. coli have been reported--3167 without the hemolytic-uremic syndrome (16 deaths) and 908 with the hemolytic-uremic syndrome (34 deaths)--indicating that this strain is notably more virulent than most of the Shiga-toxin-producing E.

View Article and Find Full Text PDF

The replacement of the bladder with a neobladder made from ileal tissue is the prescribed treatment in some cases of bladder cancer or trauma. Studies have demonstrated that individuals with an ileal neobladder have recurrent colonization by Escherichia coli and other species that are commonly associated with urinary tract infections; however, pyelonephritis and complicated symptomatic infections with ileal neobladders are relatively rare. This study examines the genomic content of two E.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal illness in children less than 5 years of age in low- and middle-income nations, whereas it is an emerging enteric pathogen in industrialized nations. Despite being an important cause of diarrhea, little is known about the genomic composition of ETEC. To address this, we sequenced the genomes of five ETEC isolates obtained from children in Guinea-Bissau with diarrhea.

View Article and Find Full Text PDF

Background: Although the complete genome sequence and annotation of Arabidopsis were released at the end of year 2000, it is still a great challenge to understand the function of each gene in the Arabidopsis genome. One way to understand the function of genes on a genome-wide scale is expression profiling by microarrays. However, the expression level of many genes in Arabidopsis genome cannot be detected by microarray experiments.

View Article and Find Full Text PDF

Background: Medicago truncatula is a model legume species that is currently the focus of an international genome sequencing effort. Although several different oligonucleotide and cDNA arrays have been produced for genome-wide transcript analysis of this species, intrinsic limitations in the sensitivity of hybridization-based technologies mean that transcripts of genes expressed at low-levels cannot be measured accurately with these tools. Amongst such genes are many encoding transcription factors (TFs), which are arguably the most important class of regulatory proteins.

View Article and Find Full Text PDF

We have developed two long-oligonucleotide microarrays for the analysis of genome features in Arabidopsis thaliana, in particular for the high-throughput identification of transcription factor-binding sites. The first platform contains 190,000 probes representing the 2-kb regions upstream of all annotated genes at a density of seven probes per promoter. The second platform is divided into three chips, each of over 390,000 features, and represents the entire Arabidopsis genome at a density of one probe per 90 bases.

View Article and Find Full Text PDF

In the fully sequenced Arabidopsis (Arabidopsis thaliana) genome, many gene models are annotated as "hypothetical protein," whose gene structures are predicted solely by computer algorithms with no support from either expressed sequence matches from Arabidopsis, or nucleic acid or protein homologs from other species. In order to confirm their existence and predicted gene structures, a high-throughput method of rapid amplification of cDNA ends (RACE) was used to obtain their cDNA sequences from 11 cDNA populations. Primers from all of the 797 hypothetical genes on chromosome 2 were designed, and, through 5' and 3' RACE, clones from 506 genes were sequenced and cDNA sequences from 399 target genes were recovered.

View Article and Find Full Text PDF

We describe the development of a high-density Arabidopsis'whole genome' oligonucleotide probe array for expression analysis (the Affymetrix ATH1 GeneChip probe array) that contains approximately 22 750 probe sets. Precedence on the array was given to genes for which either expression evidence or a credible database match existed. The remaining space was filled with 'hypothetical' genes.

View Article and Find Full Text PDF