After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear.
View Article and Find Full Text PDFThe effects of neuroinvasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) become clinically relevant due to the numerous neurological symptoms observed in Corona Virus Disease 2019 (COVID-19) patients during infection and post-COVID syndrome or long COVID. This study reports the biofabrication of a 3D bioprinted neural-like tissue as a proof-of-concept platform for a more representative study of SARS-CoV-2 brain infection. Bioink is optimized regarding its biophysical properties and is mixed with murine neural cells to construct a 3D model of COVID-19 infection.
View Article and Find Full Text PDFThe pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is receiving worldwide attention, due to the severity of the disease (COVID-19) that resulted in more than a million global deaths so far. The urgent need for vaccines and antiviral drugs is mobilizing the scientific community to develop strategies for studying the mechanisms of SARS-CoV-2 infection, replication kinetics, pathogenesis, host-virus interaction, and infection inhibition. In this work, we review the strategies of tissue engineering in the fabrication of three-dimensional (3D) models used in virology studies, which presented many advantages over conventional cell cultures, such as complex cytoarchitecture and a more physiological microenvironment.
View Article and Find Full Text PDFFibrin gel has been widely used for engineering various types of tissues due to its biocompatible nature, biodegradability, and tunable mechanical and nanofibrous structural properties. Despite their promising regenerative capacity and extensive biocompatibility with various tissue types, fibrin-based biomaterials are often notoriously known as burdensome candidates for 3D biofabrication and bioprinting. The high viscosity of fibrin (crosslinked form) hinders proper ink extrusion, and its pre-polymer form, fibrinogen, is not capable of maintaining shape fidelity.
View Article and Find Full Text PDFHyperbaric oxygen is a clinical treatment that contributes to wound healing by increasing fibroblasts proliferation, collagen synthesis, and production of growth factors, inducing angiogenesis and inhibiting antimicrobial activity. It also has been shown that hyperbaric oxygen treatment (HBO), through the activation of nitric oxide synthase promotes an increase in the nitric oxide levels that may improve endothelial progenitor cells (EPC) mobilization from bone marrow to the peripheral blood and stimulates the vessel healing process. However, cellular mechanisms involved in cell proliferation and activation of EPC after HBO treatment remain unknown.
View Article and Find Full Text PDF