Publications by authors named "Julia Buske"

Most monoclonal antibody formulations require the presence of a surfactant, such as polysorbate, to ensure protein stability. The presence of high concentrations of polysorbate have been shown to enhance photooxidation of certain protein drug products when exposed to visible light. The current literature, however, suggest that photooxidation of polysorbate only occurs when exposed to visible light in combination with UVA light.

View Article and Find Full Text PDF

Polysorbates (PS) are the most frequently used surfactants to stabilize biologicals. Ironically, these excellent stabilizing non-ionic surfactants have inherent structural properties, which lead to instabilities of their own. Such PS degradation can be triggered by multiple root-causes, like chemical and enzymatic hydrolysis or oxidative degradation.

View Article and Find Full Text PDF

Polysorbates (PS) are esters of ethoxylated sorbitol anhydrides of different composition and are widely used surfactants in biologics. PSs are applied to increase protein stability and concomitant shelf-life via shielding against e.g.

View Article and Find Full Text PDF

The surfactants polysorbate 20 (PS20) and polysorbate 80 (PS80) are utilized to stabilize protein drugs. However, concerns have been raised regarding the degradation of PSs in biologics and the potential impact on product quality. Oxidation has been identified as a prevalent degradation mechanism under pharmaceutically relevant conditions.

View Article and Find Full Text PDF

To ensure the stability of biologicals over their entire shelf-life, non-ionic surface-active compounds (surfactants) are added to protect biologics from denaturation and particle formation. In this context, polysorbate 20 and 80 are the most used detergents. Despite their benefits of low toxicity and high biocompatibility, specific factors are influencing the intrinsic stability of polysorbates, leading to degradation, loss in efficacy, or even particle formation.

View Article and Find Full Text PDF

Visible light (400-800 nm) can lead to photooxidation of protein formulations, which might impair protein integrity. However, the relevant mechanism of photooxidation upon visible light exposure is still unclear for therapeutic proteins, since proteinogenic structures do not absorb light in the visible range. Here, we show that exposure of monoclonal antibody formulations to visible light, lead to the formation of reactive oxygen species (ROS), which subsequently induce specific protein degradations.

View Article and Find Full Text PDF

Biologicals including monoclonal antibodies are the current flagships in pharmaceutical industry. However, they are exposed to a multitude of destabilization conditions like for instance hydrophobic interfaces, leading to reduced biological activity. Polysorbates are commonly applied to effectively stabilize these active pharmaceutical ingredients against colloidal stress.

View Article and Find Full Text PDF

Given their safety and efficiency in protecting protein integrity, polysorbates (PSs) have been the most widely used excipients for the stabilization of protein therapeutics for years. In recent decades, however, there have been numerous reports about visible or sub-visible particles in PS-containing biotherapeutic products, which is a major quality concern for parenteral drugs. Alternative excipients that are safe for parenteral administration, efficient in protecting different protein drugs against various stress conditions, effective in protein stabilization in high-concentrated liquid formulations, stable under the storage conditions for the duration of the product's shelf-life, and compatible with other formulation components and the primary packaging are highly sought after.

View Article and Find Full Text PDF

Polysorbates are an important class of nonionic surfactants that are widely used to stabilize biopharmaceuticals. The degradation of polysorbate 20 and 80 and the related particle formation in biologics are heavily discussed in the pharmaceutical community. Although a lot of experimental effort was spent in the detailed study of potential degradation pathways, the underlying mechanisms are only sparsely understood.

View Article and Find Full Text PDF

Surfactants are used to stabilize biologics. Particularly, polysorbates (Tween® 20 and Tween® 80) dominate the group of surfactants in protein and especially antibody drug products. Since decades drug developers rely on the ethoxylated sorbitan fatty acid ester mixtures to stabilize sensitive molecules such as proteins.

View Article and Find Full Text PDF

Polysorbates (PSs, Tweens) are widely used surfactant products consisting of a sorbitan ring connecting up to four ethylene oxide (EO) chains of variable lengths, one or more of which are esterified with fatty acids of variable lengths and saturation degrees. Pharmaceutical applications include the stabilization of biologicals in solutions and the solubilization of poorly water soluble, active ingredients. This study characterizes the complex association behavior of compendial PSs PS20 and PS80, which is fundamentally different from that of single-component surfactants.

View Article and Find Full Text PDF

The present study investigated the photodegradation of three different monoclonal antibodies (mAb) by visible light. Several chromatographic techniques, such as size-exclusion and hydrophobic interaction chromatography as well as mass spectrometry were used to measure relative changes of various oxidation related monoclonal antibody species. The results show that visible light is indeed capable of inducing the formation of protein photo-oxidation products, such as acidic, basic, hydrophilic, and several other protein species with altered physicochemical properties.

View Article and Find Full Text PDF

The enzymatic hydrolysis of polysorbates, e.g. induced by specific host cell proteins in biologics, is a known risk factor regarding the potential particle formation in the product over time.

View Article and Find Full Text PDF

Polysorbates are widely used as non-ionic surfactant in biopharmaceutical formulations. Recently, the degradation of polysorbate moved into the focus of attention, because in several published studies it was described, that stability issues in polysorbate containing formulations were observed leading to the formation and appearance of sub-visible and visible particles. For this reason, monitoring of polysorbate and its degradation products is of importance throughout the development of parenterals.

View Article and Find Full Text PDF

Two of the most widely used surfactants to stabilize biologicals against e.g. interfacial stress are polysorbate20 (PS20) and polysorbate 80 (PS80).

View Article and Find Full Text PDF

Polysorbate is one of the most commonly employed non-ionic surfactant in protein containing biological formulations, whereby, it can stabilize these biomolecules under different stress conditions. Despite the fact that polysorbates are present in almost 70% of currently marketed parenteral biological drugs, polysorbate degradation in biopharmaceutical formulations has emerged as a specific quality concern. Different degradation pathways have been explored in the recent years with the aim of understanding the root cause for polysorbate degradation in biopharmaceutical formulations.

View Article and Find Full Text PDF