While sclerostin-neutralizing antibodies (Scl-Abs) transiently stimulate bone formation by activating Wnt signaling in osteoblast lineage cells, they exert sustained inhibition of bone resorption, suggesting an alternate signaling pathway by which Scl-Abs control osteoclast activity. Since sclerostin can activate platelet-derived growth factor receptors (PDGFRs) in osteoblast lineage cells in vitro and PDGFR signaling in these cells induces bone resorption through M-CSF secretion, we hypothesized that the prolonged anticatabolic effect of Scl-Abs could result from PDGFR inhibition. We show here that inhibition of PDGFR signaling in osteoblast lineage cells is sufficient and necessary to mediate prolonged Scl-Ab effects on M-CSF secretion and osteoclast activity in mice.
View Article and Find Full Text PDFMesenchymal-derived osteoblasts play a key role in bone formation via synthesis and mineralization of the bone and bone remodeling. Osteoclasts are multinucleated cells of hematopoietic origin with a role in bone resorption. Here, we describe a protocol for generating primary cultures of these two cell types from bone tissue including the femur, tibia, and humerus of young mice.
View Article and Find Full Text PDFOsteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34°C) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects.
View Article and Find Full Text PDFThe physiological functions of platelet-derived growth factor receptors (PDGFRs) α and β in osteoblast biology and bone metabolism remain to be established. Here, we show that PDGFRA and PDGFRB genes are expressed by osteoblast-lineage canopy and reversal cells in close proximity to PDGFB-expressing osteoclasts within human trabecular bone remodeling units. We also report that, although removal of only one of the two PDGFRs in Osterix-positive cells does not affect bone phenotype, suppression of both PDGFRs in those osteoblast lineage cells increases trabecular bone volume in male mice as well as in female gonad-intact and ovariectomized mice.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of energy metabolism. In bone, it is known to regulate osteoblast differentiation and osteoclast activity. Whether PPARγ expression in bone cells, particularly osteocytes, regulates energy metabolism remains unknown.
View Article and Find Full Text PDFAlthough inhibitors of bone resorption concomitantly reduce bone formation because of the coupling between osteoclasts and osteoblasts, inhibition or deletion of cathepsin k (CatK) stimulates bone formation despite decreasing resorption. The molecular mechanisms responsible for this increase in bone formation, particularly at periosteal surfaces where osteoclasts are relatively poor, remain unclear. Here we show that CatK pharmacological inhibition or deletion (Ctsk mice) potentiates mechanotransduction signals mediating cortical bone formation.
View Article and Find Full Text PDFThe aim of this laboratory method is to describe two approaches for the investigation of bone responses to mechanical loading in mice in vivo. The first is running exercise, because it is easily translatable clinically, and the second is axial compression of the tibia, because it is precisely controllable. The effects of running exercise, and in general physical activity, on bone tissue have been shown to be both direct through mechanical loading (ground impact and muscle tension) and indirect through metabolic changes.
View Article and Find Full Text PDFAge-related bone loss is characterized by reduced osteoblastogenesis and excessive bone marrow adipogenesis. The mechanisms governing bone marrow mesenchymal stromal cell (BMSC) differentiation into adipocytes or osteoblasts during aging are unknown. We show here that overexpressing N-cadherin (Cadh2) in osteoblasts increased BMSC adipocyte differentiation and reduced osteoblast differentiation in young transgenic (Tg) mice whereas this phenotype was fully reversed with aging.
View Article and Find Full Text PDFBackground: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2) acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model.
View Article and Find Full Text PDFWnt signaling is an important pathway that controls the osteogenic differentiation of mesenchymal stromal cells (MSC). We previously showed that FHL2, a LIM-only protein with four and a half LIM domains, controls MSC osteogenic differentiation via the canonical Wnt/β-catenin signaling. In this study, we investigated the role of Wnt proteins in the regulation of MSC differentiation by FHL2.
View Article and Find Full Text PDFPromoting osteoblastogenesis remains a major challenge in disorders characterized by defective bone formation. We recently showed that the alpha 5 integrin subunit (ITGA5) is critically involved in human mesenchymal cell osteoblast differentiation. In this study, we determined the potential of pharmacological ITGA5 activation by a synthetic cyclic peptide (GA-CRRETAWAC-GA) on murine osteoblast differentiation and function in vitro and bone formation in vivo.
View Article and Find Full Text PDF