Publications by authors named "Julia Benedix"

Co-translational transport of polypeptides into the endoplasmic reticulum (ER) involves the Sec61 channel and additional components such as the ER lumenal Hsp70 BiP and its membrane-resident co-chaperone Sec63p in yeast. We investigated whether silencing the SEC61A1 gene in human cells affects co- and post-translational transport of presecretory proteins into the ER and post-translational membrane integration of tail-anchored proteins. Although silencing the SEC61A1 gene in HeLa cells inhibited co- and post-translational transport of signal-peptide-containing precursor proteins into the ER of semi-permeabilized cells, silencing the SEC61A1 gene did not affect transport of various types of tail-anchored protein.

View Article and Find Full Text PDF

The molecular carcinogenesis of lung cancer has yet to be clearly elucidated. We investigated the possible oncogenic function of SEC62 in lung cancer, which was predicted based on our previous findings that lung and thyroid cancer tissue samples exhibited increased Sec62 protein levels. The SEC62 gene locus is at 3q26.

View Article and Find Full Text PDF

In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, as formed by Sec61 complexes in the ER membrane, would seriously interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism for intracellular signalling. We identified a calmodulin (CaM)-binding motif in the cytosolic N-terminus of mammalian Sec61α that bound CaM but not Ca2+-free apocalmodulin with nanomolar affinity and sequence specificity.

View Article and Find Full Text PDF

Ribosomes synthesizing secretory and membrane proteins are bound to the endoplasmic reticulum (ER) membrane and attach to ribosome-associated membrane proteins such as the Sec61 complex, which forms the protein-conducting channel in the membrane. The ER membrane-resident Hsp40 protein ERj1 was characterized as being able to recruit BiP to ribosomes in solution and to regulate protein synthesis in a BiP-dependent manner. Here, we show that ERj1 and Sec61 are associated with ribosomes at the ER of human cells and that the binding of ERj1 to ribosomes occurs with a binding constant in the picomolar range and is prevented by pretreatment of ribosomes with RNase.

View Article and Find Full Text PDF