Cells are equipped with intracellular RIG-like Receptors (RLRs) detecting double stranded (ds)RNA, a molecule with Pathogen-Associated Molecular Pattern (PAMPs) generated during the life cycle of many viruses. Melanoma Differentiation-Associated protein 5 (MDA5), a helicase enzyme member of the RLRs encoded by the ifih1 gene, binds to long dsRNA molecules during a viral infection and initiates production of type I interferon (IFN1) which orchestrates the antiviral response. In order to understand the contribution of MDA5 to viral resistance in fish cells, we have isolated a clonal Chinook salmon Oncorhynchus tshawytscha epithelial-like cell line invalidated for the ifih1 gene by CRISPR/Cas9 genome editing.
View Article and Find Full Text PDFGilthead sea bream and European sea bass display different resistance-susceptibility patterns during infection with different nervous necrosis virus (NNV) species, which may derive from differences in the triggered immune response. Based on this premise, we analysed the transcription of several selected immune-related genes in sea bream experimentally infected with NNV isolates obtained from sea bass (DlNNV, RGNNV) or sea bream (SaNNV, RGNNV/SJNNV). Viral replication only occurred in SaNNV-inoculated fish; therefore, the differences between the immune response elicited by both viruses may be the key to understanding the mechanism behind the inhibition of DlNNV replication.
View Article and Find Full Text PDFThe use of functional feeds in aquaculture is currently increasing. This study aimed to assess the combined impact of dietary green microalgae and ethanol-inactivated DCF12.2 (CVP diet) on thick-lipped grey mullet () juvenile fish.
View Article and Find Full Text PDFFish RTP3, belonging to the receptor-transporting protein family, display several functions, including a putative antiviral role as virus-responsive gene. In this work, we have identified and characterized two different European sea bass rtp3 genes. In addition, an in vivo transcription analysis in response to LPS, poly I:C and betanodavirus infection (RGNNV genotype) has been performed.
View Article and Find Full Text PDFNervous necrosis virus, NNV, is a neurotropic virus that causes viral nervous necrosis disease in a wide range of fish species, including European sea bass (). NNV has a bisegmented (+) ssRNA genome consisting of RNA1, which encodes the RNA polymerase, and RNA2, encoding the capsid protein. The most prevalent NNV species in sea bass is red-spotted grouper nervous necrosis virus (RGNNV), causing high mortality in larvae and juveniles.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2022
IFN-I generates an antiviral state by inducing the expression of numerous genes, called IFN-stimulated genes, ISGs, including ISG15, which is the only ISG with cytokine-like activity. In a previous study, we developed the Dl_ISG15_E11 cell line, which consisted of E11 cells able to express and secrete sea bass ISG15. The current study is a step forward, analysing the effect of secreted sea bass ISG15 on RGNNV replication in E11 cells, and looking into its immunomodulatory activity in order to corroborate its cytokine-like activity.
View Article and Find Full Text PDFAquaculture constitutes an alternative source for food production and contributes to a reduction in the indiscriminate catching of aquatic organisms in their natural environment. However, high mortality during the larval state remains a challenge in this sector, mainly because of factors such as diet and diseases caused by pathogens. Therefore, growth and health management is a key strategy for sustainable aquaculture.
View Article and Find Full Text PDFEuropean sea bass is highly susceptible to the nervous necrosis virus, RGNNV genotype, whereas natural outbreaks caused by the SJNNV genotype have not been recorded. The onset and severity of an infectious disease depend on pathogen virulence factors and the host immune response. The importance of RGNNV capsid protein amino acids 247 and 270 as virulence factors has been previously demonstrated in European sea bass; however, sea bass immune response against nodaviruses with different levels of virulence has been poorly characterized.
View Article and Find Full Text PDFViral Haemorrhagic Septicaemia Virus (VHSV) isolates virulent to marine fish species can replicate in freshwater species, although producing little or no mortality. Conversely, isolates from freshwater fish do not cause disease in marine species. An inverse relationship between VHSV virulence and host mx gene up-regulation has been described for several fish species, suggesting that differences between the antagonistic activity exerted by these isolates might be involved in the outcome of infections.
View Article and Find Full Text PDFInterferons (IFNs) play a key role in the innate immunity of vertebrates against viral infections by inducing hundreds of IFN-stimulated genes (ISGs), such as isg15. Isg15 is an ubiquitin-like protein, which can conjugate cellular and viral proteins in a process called ISGylation, although it can also act as a cytokine-like protein. Gilthead seabream (Sparus aurata L.
View Article and Find Full Text PDFInterferons are essential in fish resistance to viral infections. They induce interferon-stimulated genes, such as isg15. In this study, the Senegalese sole isg15 gene (ssisg15) has been characterized.
View Article and Find Full Text PDFSenegalese sole is susceptible to marine VHSV isolates but is not affected by freshwater isolates, which may indicate differences regarding virus-host immune system interaction. IFN I induces an antiviral state in fish, stimulating the expression of genes encoding antiviral proteins (ISG). In this study, the stimulation of the Senegalese sole IFN I by VHSV infections has been evaluated by the relative quantification of the transcription of several ISG (Mx, Isg15 and Pkr) after inoculation with marine (pathogenic) and freshwater (non-pathogenic) VHSV isolates.
View Article and Find Full Text PDFMx proteins are main effectors of the antiviral innate immune defence mediated by type I interferon (IFN I). The IFN I response is under a complex regulation; hence, one of the key issues in understanding virus-host interaction is the knowledge of the regulatory mechanisms governing this response. With this purpose, in this study Chinook salmon embryo cells (CHSE-214) and rainbow trout gonad cells (RTG-2) were transiently transfected with a vector containing the luciferase reporter gene under the control of the Senegalese sole Mx promoter.
View Article and Find Full Text PDFMx proteins are one of the most studied interferon-stimulated genes (ISGs). The antiviral activity against different fish viruses has been demonstrated for diverse fish Mx proteins, including the Senegalese sole (Solea senegalensis) Mx protein (SsMx). The aim of the current study is to characterize the structure and functional activity of the SsMx promoter.
View Article and Find Full Text PDFInterferons play a key role in fish resistance to viral infections by inducing the expression of antiviral proteins, such as Mx. The aim of the present study was to test the antiviral activity of the Senegalese sole Mx protein (SsMx) against RNA and DNA viruses pathogenic to fish, i.e.
View Article and Find Full Text PDFThe viral nervous necrosis virus (VNNV) is the causal agent of viral encephalopathy and retinopathy (VER), a worldwide fish disease that is responsible for high mortality in both marine and freshwater species. Infected fish suffer from encephalitis, which leads to abnormal swimming behavior and extensive cellular vacuolation and neuronal degeneration in the central nervous system (CNS) and retina. The marine fish gilthead seabream (Sparus aurata) does not develop VER but it is an asymptomatic carrier of VNNV.
View Article and Find Full Text PDFFish cells stably expressing exogenous genes have potential applications in the production of fish recombinant proteins, gene-function studies, gene-trapping, and the production of transgenic fish. However, expression of a gene of interest after random integration may be difficult to predict or control. In the past decade, major contributions have been made in vertebrate-gene transfer, by using tools derived from DNA transposons.
View Article and Find Full Text PDFLysozymes are key molecules of innate immunity and proved high bactericidal activity in fish, thus becoming attractive as tools for enhancing fish defences. In this study, a full-length c-type lysozyme cDNA from Senegalese sole (Solea senegalensis) has been cloned and characterized. The cDNA sequence was inferred from two overlapping fragments obtained by RACE-PCR and consisting on 631bp coding for 143 aminoacids.
View Article and Find Full Text PDFFish Shellfish Immunol
February 2008
Senegalese sole, Solea senegalensis, is a flat fish of growing interest in European aquaculture. In its culture viral infections are constant threats, thus understanding antiviral defences is a key factor for a successful industry. Mx proteins are IFN-induced proteins widespread in eukaryotes; however, their antiviral activity is unclear and the results variable among species.
View Article and Find Full Text PDFThe transcription of Mx mRNA after poly I:C induction and sole aquabirnavirus infection has been analysed in SAF-1 and TV-1 cells (derived from gilt-head seabream and turbot, respectively). Both cell lines were stimulated with 10 microg ml(-1) poly I:C and Mx mRNA was analysed by a specific RT-PCR at several times post-induction. The results showed a high level of Mx expression from 12 to 120 h after induction in SAF-1 cells, whereas in TV-1 cells Mx mRNA was only detected at 12 and 24h.
View Article and Find Full Text PDFES cells provide a promising tool for the generation of transgenic animals with site-directed mutations. When ES cells colonize germ cells in chimeras, transgenic animals with modified phenotypes are generated and used either for functional genomics studies or for improving productivity in commercial settings. Although the ES cell approach has been limited to mice, there is strong interest for developing the technology in fish.
View Article and Find Full Text PDFSenegalese sole (Solea senegalensis) is a promising fish species of growing interest in European aquaculture. In fish farming, viral infections are a constant threat therefore, understanding fish defence mechanisms is a main priority to avoid economic losses. Mx proteins are involved in the innate antiviral response of fish.
View Article and Find Full Text PDFFish cell lines are increasingly important research tools. The SAF-1 cell line, fibroblast-like culture derived from the marine fish gilthead seabream (Sparus aurata), has proved useful in many applications, especially in viral research. For cell lines intended as in vitro models, characterization of their properties and authentication are essential for deeper understanding of their performance and thus more precise experimental design and applicability.
View Article and Find Full Text PDFEmbryonic stem (ES) cell lines have provided very useful models to analyse differentiation processes. We present here the development of a differentiation system using ES-like cell lines from medaka. These cells were transfected with the melanocyte specific isoform of the microphtalmia-related transcription factor (Mitf).
View Article and Find Full Text PDFEmbryonic stem (ES) cells provide a unique tool for cell-mediated gene transfer and targeted gene mutations due to the possibility of in vitro selection of desired genotypes. When selected cells contribute to the germ line in chimaeric embryos, transgenic animals may be generated with modified genetic traits. Though the ES cell approach has up to now been limited to mice, there is an increasing interest to develop this technology in both model and commercial fish species, with so far promising results in the medaka and zebrafish.
View Article and Find Full Text PDF