Publications by authors named "Julia Asp"

Objective: Cell-free DNA (cfDNA) is used as a biomarker after transplantation to detect graft injury, relying on the donor fraction (DF). We have established a PCR-based approach allowing us to separately quantify absolute values of dd-cfDNA and recipient-derived cfDNA (rd-cfDNA). We aimed to present typical clinical scenarios after heart transplantation (HTx) to illustrate the advantages of absolute cfDNA values over DF.

View Article and Find Full Text PDF

In this prospective study we investigated a cohort after heart transplantation with a novel PCR-based approach with focus on treated rejection. Blood samples were collected coincidentally to biopsies, and both absolute levels of dd-cfDNA and donor fraction were reported using digital PCR. 52 patients (11 children and 41 adults) were enrolled (NCT03477383, clinicaltrials.

View Article and Find Full Text PDF

Introduction: Myeloproliferative neoplasm (MPN) is a heterogenous group of hematological malignancies including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). V617F is the most frequent driver mutation in all three entities, but in PMF and ET mutations in and are also frequent. Mutations seen in additional genes are also often the same regardless of subtype of MPN.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) results from aberrant hematopoietic processes and these changes are frequently initiated by chromosomal translocations. One particular subtype, AML with translocation t(7;12)(q36;p13), is found in children diagnosed before 2 years of age. The mechanisms for leukemogenesis induced by t(7;12) is not understood, in part because of the lack of efficient methods to reconstruct the leukemia-associated genetic aberration with correct genomic architecture and regulatory elements.

View Article and Find Full Text PDF

Introduction: Reverse transcriptase quantitative PCR (RT-qPCR) is considered the method of choice for measurable residual disease (MRD) assessment in NPM1-mutated acute myeloid leukemia (AML). MRD can also be determined with DNA-based methods offering certain advantages. We here compared the DNA-based methods quantitative PCR (qPCR), droplet digital PCR (ddPCR), and targeted deep sequencing (deep seq) with RT-qPCR.

View Article and Find Full Text PDF

Polycythaemia vera (PV) patients have an overall comparatively favourable prognosis, but disease progression is very heterogeneous and life-threatening thrombosis and bleedings are frequent complications in untreated disease. Moreover, transformation to more severe secondary myelofibrosis and acute myeloid leukaemia can occur. The aim of this study was to identify gene mutations that could be used together with clinical data as prognostic markers to guide treatment decisions in PV patients.

View Article and Find Full Text PDF

Transcriptional studies of the human heart provide insight into physiological and pathophysiological mechanisms, essential for understanding the fundamental mechanisms of normal cardiac function and how they are altered by disease. To improve the understanding of why men and women may respond differently to the same therapeutic treatment it is crucial to learn more about sex-specific transcriptional differences. In this study the transcriptome of right atrium and left ventricle was compared across sex and regional location.

View Article and Find Full Text PDF

External quality assurance (EQA) programs are vital to ensure high quality and standardized results in molecular diagnostics. It is important that EQA for quantitative analysis takes into account the variation in methodology. Results cannot be expected to be more accurate than limits of the technology used, and it is essential to recognize factors causing substantial outlier results.

View Article and Find Full Text PDF

Minimal residual disease (MRD) in acute myeloid leukemia (AML) is of major prognostic importance. The genetic landscape of AML is characterized by numerous somatic mutations, which constitute potential MRD markers. Leukemia-specific mutations can be identified with exome sequencing at diagnosis and assessed during follow-up at low frequencies by using targeted deep sequencing.

View Article and Find Full Text PDF

Mutations in NPM1 can be used for minimal residual disease (MRD) analysis in acute myeloid leukemia (AML). We here applied a newly introduced method, deep sequencing, allowing for simultaneous analysis of all recurrent NPM1 insertions and thus constituting an attractive alternative to multiple PCRs for the clinical laboratory. We retrospectively used deep sequencing for measurement of MRD pre- and post-allogeneic hematopoietic stem cell transplantation (alloHCT).

View Article and Find Full Text PDF

Successful hematopoietic stem and progenitor cell (HSPC) transplantation rests upon reliable methods for their enumeration in sources such as cord blood (CB). Methods used today are costly, time consuming and exhaust the limited number of cells needed for transplantation. The aim of this study was to analyze if surplus plasma from CB contains biomarkers that can predict HSPC content in CB.

View Article and Find Full Text PDF

Flow cytometry (FCM) has become a well-established method for analysis of both intracellular and cell-surface proteins, while quantitative RT-PCR (RT-qPCR) is used to determine gene expression with high sensitivity and specificity. Combining these two methods would be of great value. The effects of intracellular staining on RNA integrity and RT-qPCR sensitivity and quality have not, however, been fully examined.

View Article and Find Full Text PDF

Physical exercise has several beneficial effects on the heart. In other tissues it has been shown to activate endogenous stem cells. There is however a lack of knowledge how exercise affects the distribution of progenitor cells as well as overall cell turnover within the heart.

View Article and Find Full Text PDF

Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital.

View Article and Find Full Text PDF

Stage-specific embryonic antigen (SSEA) expression is used to describe the differentiation state of an embryonic stem cell (ESC). In human ESCs, SSEA-3 and SSEA-4 are highly expressed in undifferentiated cells and downregulated upon differentiation. SSEA-4 has also been described as a marker for adult stem cells in various tissues, including human neonatal cardiac tissue.

View Article and Find Full Text PDF

C-kit expressing cardiac stem cells have been described as multipotent. We have previously identified human cardiac C-kit+CD45- cells, but only found evidence of endothelial commitment. A small cardiac committed subpopulation within the C-kit+CD45- population might however be present.

View Article and Find Full Text PDF

3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS) cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks.

View Article and Find Full Text PDF

A common feature of the ischemic heart and atherosclerotic plaques is the presence of hypoxia (insufficient levels of oxygen in the tissue). Hypoxia has pronounced effects on almost every aspect of cell physiology, and the nuclear transcription factor hypoxia inducible factor-1α (HIF-1α) regulates adaptive responses to low concentrations of oxygen in mammalian cells. In our recent work, we observed that hypoxia increases the proinflammatory enzyme arachidonate 15-lipoxygenase (ALOX15B) in human carotid plaques.

View Article and Find Full Text PDF

Cardiac "side population" (SP) cells have previously been found to differentiate into both endothelial cells and cardiomyocytes in mice and rats, but there are no data on SP cells in the human adult heart. Therefore, human cardiac atrial biopsies were dissociated, stained for SP cells and analyzed with FACS. Identified cell populations were analyzed for gene expression by quantitative real-time PCR and subjected to in vitro differentiation.

View Article and Find Full Text PDF

Studies of expressed genes in human heart provide insight into both physiological and pathophysiological mechanisms. This is of importance for extended understanding of cardiac function as well as development of new therapeutic drugs. Heart tissue for gene expression studies is generally hard to obtain, particularly from the ventricles.

View Article and Find Full Text PDF

In this article, recent progress in cardiotoxicity testing based on the use of immortalized cell lines or human embryonic stem cell (hESC) derived cardiomyocytes in combination with state-of-the-art bioanalytical methods and sensors is reviewed. The focus is on hESC-derived cells and their refinement into competent testing cells, but the access and utility of other relevant cell types are also discussed. Recent developments in sensor techniques and bioanalytical approaches for measuring critical cardiotoxicity parameters are highlighted, together with aspects of data evaluation and validation.

View Article and Find Full Text PDF

Aims: The aim of this study was to develop a 3D culture system with similarities to the human heart, which was suitable for studies of adult cardiac stem or progenitor cells.

Materials & Methods: Dissociated cells from human cardiac biopsies were placed in high-density pellet cultures and cultured for up to 6 weeks. Gene and protein expressions, analyzed by quantitative real-time PCR and immunohistochemistry, and morphology were studied in early and late pellets.

View Article and Find Full Text PDF

Cardiotoxicity testing is a key activity in the pharmaceutical industry in order to detect detrimental effects of new drugs. A reliable human in vitro model would both be beneficial in selection of lead compounds and be important for reducing animal experimentation. However, the human heart is a complex organ composed of many distinct types of cardiomyocytes, but cardiomyocyte clusters (CMCs) derived from human embryonic stem cells could be an option for a cellular model.

View Article and Find Full Text PDF