The halogen bond (XB) donor properties of neutral 1,4-diaryl-5-iodo-1,2,3-triazoles are explored using a combination of computational and experimental results and are shown to be competitive in halogen bonding efficiency with the classic pentafluoroiodobenzene XB donor. The SAr reactivity of these donors permits the facile assembly of an iodotriazole functionalised with a 3-oxypyridine XB acceptor, thus generating a molecular scaffold capable of undergoing dimerisation through the formation of two halogen bonds. The formation of this halogen-bonded dimer is demonstrated by H and DOSY NMR experiments and a plausible structure generated using DFT calculations.
View Article and Find Full Text PDFThere is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered.
View Article and Find Full Text PDFNMR spectroscopy is a excellent tool for monitoring in-situ chemical reactions. In particular, DOSY measurement is well suited to characterize transient species by the determination of their sizes. However, here we bring to light a difficulty in the DOSY experiments performed in out-of-equilibrium systems.
View Article and Find Full Text PDFMost of the biological effects of androgen hormones are mediated through an intracellular transcription factor, the androgen receptor (AR). This protein presents a long disordered N-terminal domain (NTD), known to aggregates into amyloid fibers.1 This aggregation property is usually associated with the presence of a poly-glutamine tract (polyQ), known to be involved in several pathologies.
View Article and Find Full Text PDF