Considering the worldwide market of batteries and supercapacitors, the (partial or total) replacement of conventional fossil-derived carbonates with bio-based ones in electrolyte formulations would allow the production of safer and more sustainable devices. In this work, embracing the 7 principle of green chemistry, glycerol derivatives (namely glycerol carbonate and solketal carbonate) are tested as solvents and additives for electrolyte formulations. Glycerol carbonate is innovatively employed as promising electrolyte solvent for electric double-layer capacitors with excellent performances.
View Article and Find Full Text PDFWith its very high theoretical energy density, the Li-O battery could be considered a valid candidate for future advanced energy storage solutions. However, the challenges hindering the practical application of this technology are many, as for example electrolyte degradation under the action of superoxide radicals produced upon cycling. In that frame, a gel polymer electrolyte was developed starting from waste-derived components: gelatin from cold water fish skin, waste from the fishing industry, and wood flour waste from the wood industry.
View Article and Find Full Text PDFLithium-oxygen batteries, with their very high energy density (3500 Wh kg), could represent a real breakthrough in the envisioned strategies towards more efficient energy storage solutions for a less and less carbonated energy mix. However, the problems associated with this technology are numerous. A first one is linked to the high reactivity of the lithium metal anode, while a second one is linked to the highly oxidative environment created by the cell's O saturation.
View Article and Find Full Text PDFLithium-sulfur technology is a strong candidate for the future generation of batteries due to its high specific capacity (1675 mAh g-1), low cost, and environmental impact. In this work, we propose a facile and solvent-free microwave synthesis for a composite material based on doped (sulfur and nitrogen) reduced graphene oxide embedded with zinc sulfide nanoparticles (SN-rGO/ZnS) to improve the battery performance. The chemical-physical characterization (XRD, XPS, FESEM, TGA) confirmed the effectiveness of the microwave approach in synthesizing the composite materials and their ability to be loaded with sulfur.
View Article and Find Full Text PDFIn this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of ∼65-70 kJ mol. A rubbery plateau modulus of 0.
View Article and Find Full Text PDFPotassium batteries show interesting peculiarities as large-scale energy storage systems and, in this scenario, the formulation of polymer electrolytes obtained from sustainable resources or waste-derived products represents a milestone activity. In this study, a lignin-based membrane is designed by crosslinking a pre-oxidized Kraft lignin matrix with an ethoxylated difunctional oligomer, leading to self-standing membranes that are able to incorporate solvated potassium salts. The in-depth electrochemical characterization highlights a wide stability window (up to 4 V) and an ionic conductivity exceeding 10 S cm at ambient temperature.
View Article and Find Full Text PDFManufactured globally on industrial scale, cyclodextrins (CD) are cyclic oligosaccharides produced by enzymatic conversion of starch. Their typical structure of truncated cone can host a wide variety of guest molecules to create inclusion complexes; indeed, we daily use CD as unseen components of food, cosmetics, textiles and pharmaceutical excipients. The synthesis of active material composites from CD resources can enable or enlarge the effective utilization of these products in the battery industry with some economical as well as environmental benefits.
View Article and Find Full Text PDFLi-O batteries represent a promising rechargeable battery candidate to answer the energy challenges our world is facing, thanks to their ultrahigh theoretical energy density. However, the poor cycling stability of the Li-O system and, overall, important safety issues due to the formation of Li dendrites, combined with the use of organic liquid electrolytes and O cross-over, inhibit their practical applications. As a solution to these various issues, we propose a composite gel polymer electrolyte consisting of a highly cross-linked polymer matrix, containing a dextrin-based nanosponge and activated with a liquid electrolyte.
View Article and Find Full Text PDFMagnesium-based batteries represent one of the successfully emerging electrochemical energy storage chemistries, mainly due to the high theoretical volumetric capacity of metallic magnesium (i.e., 3833 mAh cm vs.
View Article and Find Full Text PDFNanostructured materials possess unique physical-chemical characteristics and have attracted much attention, among others, in the field of energy conversion and storage devices, for the possibility to exploit both their bulk and surface properties, enabling enhanced electron and ion transport, fast diffusion of electrolytes, and consequently high efficiency in the electrochemical processes. In particular, titanium dioxide received great attention, both in the form of amorphous or crystalline material for these applications, due to the large variety of nanostructures in which it can be obtained. In this paper, a comparison of the performance of titanium dioxide prepared through the oxidation of Ti foils in hydrogen peroxide is reported.
View Article and Find Full Text PDFIn Li-S batteries, it is important to ensure efficient reversible conversion of sulfur to lithium polysulfide (LiPS). Shuttling effects caused by LiPS dissolution can lead to reduced performance and cycle life. Although carbon materials rely on physical trapping of polysulfides, polar oxide surfaces can chemically bind LiPS to improve the stability of sulfur cathodes.
View Article and Find Full Text PDFFundamental research on Li-O batteries remains critical, and the nature of the reactions and stability are paramount for realising the promise of the Li-O system. We report that indium tin oxide (ITO) nanocrystals with supported 1-2 nm oxygen evolution reaction (OER) catalyst Ru/RuO nanoparticles (NPs) demonstrate efficient OER processes, reduce the recharge overpotential of the cell significantly and maintain catalytic activity to promote a consistent cycling discharge potential in Li-O cells even when the ITO support nanocrystals deteriorate from the very first cycle. The Ru/RuO nanoparticles lower the charge overpotential compared with those for ITO and carbon-only cathodes and have the greatest effect in DMSO electrolytes with a solution-processable F-free carboxymethyl cellulose (CMC) binder (<3.
View Article and Find Full Text PDFIon beam shaping is a novel technique with which one can shape nano-structures that are embedded in a matrix, while simultaneously imposing their orientation in space. In this work, we demonstrate that the ion-shaping technique can be implemented successfully to engineer the morphology of hollow metallic spherical particles embedded within a silica matrix. The outer diameter of these particles ranges between 20 and 60 nm and their shell thickness between 3 and 14 nm.
View Article and Find Full Text PDF