Emerging evidence suggests that the human amygdala undergoes extensive growth through adolescence, coinciding with the acquisition of complex socioemotional learning. Our objective was to longitudinally map volumetric growth of the nonhuman primate amygdala in a controlled, naturalistic social environment from birth to adulthood. Magnetic resonance images were collected at five time-points in 24 male and female rhesus macaques from 6 months to adulthood at 5 years.
View Article and Find Full Text PDFPreterm birth is associated with brain injury and altered cognitive development. However, the consequences of extrauterine development are not clearly distinguished from perinatal brain injury. Therefore, we characterized cortical growth patterns from 30 to 46 postmenstrual weeks (PMW) in 27 preterm neonates (25-32 PMW at birth) without detectable brain injury on magnetic resonance imaging.
View Article and Find Full Text PDFThe purpose of this study was to determine whether white matter microstructure measured by diffusion magnetic resonance imaging (dMRI) provides independent information about baseline level or change in executive function (EF) or memory (MEM) in older adults with and without cognitive impairment. Longitudinal data was acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study from phases GO and 2 (2009-2015). ADNI participants included were diagnosed as cognitively normal (n = 46), early mild cognitive impairment (MCI) (n = 48), late MCI (n = 29), and dementia (n = 39) at baseline.
View Article and Find Full Text PDFCross-sectional studies show that elevated cerebral amyloid is associated with greater white-matter hyperintensity (WMH) burden in cognitively normal (CN) older adults. However, the relative time courses of amyloid and WMH accrual are unclear. To address this, we tested the associations between known WMH correlates-age, hypertension, and amyloid-with WMH accrual rate.
View Article and Find Full Text PDFIn cognitively normal (CN) elderly individuals, white matter hyperintensities (WMH) are commonly viewed as a marker of cerebral small vessel disease (SVD). SVD is due to exposure to systemic vascular injury processes associated with highly prevalent vascular risk factors (VRFs) such as hypertension, high cholesterol, and diabetes. However, cerebral amyloid accumulation is also prevalent in this population and is associated with WMH accrual.
View Article and Find Full Text PDFBackground: Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety.
View Article and Find Full Text PDFWe have longitudinally assessed normative brain growth patterns in naturalistically reared Macaca mulatta monkeys. Postnatal to early adulthood brain development in two cohorts of rhesus monkeys was analyzed using magnetic resonance imaging. Cohort A consisted of 24 rhesus monkeys (12 male, 12 female) and cohort B of 21 monkeys (11 male, 10 female).
View Article and Find Full Text PDFNonhuman primates are widely used models to investigate the neural substrates of human behavior, including the development of higher cognitive and affective function. Due to their neuroanatomical and behavioral homologies with humans, the rhesus macaque monkey (Macaca mulatta) provides an excellent animal model in which to characterize the maturation of brain structures from birth through adulthood and into senescence. To evaluate hippocampal development in rhesus macaques, structural magnetic resonance imaging scans were obtained longitudinally at 9 time points between 1 week and 260 weeks (5 years) of age on 24 rhesus macaque monkeys (12 males, 12 females).
View Article and Find Full Text PDFDiagnosis of fetal isolated mild ventriculomegaly (IMVM) is the most common brain abnormality on prenatal ultrasound. We have set to identify potential alterations in brain development specific to IMVM in tissue volume and cortical and ventricular local surface curvature derived from in utero magnetic resonance imaging (MRI). Multislice 2D T2-weighted MRI were acquired from 32 fetuses (16 IMVM, 16 controls) between 22 and 25.
View Article and Find Full Text PDFTo date, growth of the human fetal cerebellum has been estimated primarily from linear measurements from ultrasound and 2D magnetic resonance imaging (MRI). In this study, we use 3D analytical methods to develop normative growth trajectories for the cerebellum in utero. We measured cerebellar volume, linear dimensions, and local surface curvature from 3D reconstructed MRI of the human fetal brain (N = 46).
View Article and Find Full Text PDFEarly cortical folding and the emergence of structural brain asymmetries have been previously analyzed by neuropathology as well as qualitative analysis of magnetic resonance imaging (MRI) of fetuses and preterm neonates. In this study, we present a dedicated image analysis framework and its application for the detection of folding patterns during the critical period for the formation of many primary sulci (20-28 gestational weeks). Using structural information from in utero MRI, we perform morphometric analysis of cortical plate surface development and modeling of early folding in the normal fetal brain.
View Article and Find Full Text PDFIn the latter half of gestation (20-40 gestational weeks), human brain growth accelerates in conjunction with cortical folding and the deceleration of ventricular zone progenitor cell proliferation. These processes are reflected in changes in the volume of respective fetal tissue zones. Thus far, growth trajectories of the fetal tissue zones have been extracted primarily from 2D measurements on histological sections and magnetic resonance imaging (MRI).
View Article and Find Full Text PDFA common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) and postmortem neuropathological studies have implicated the cerebellum in the pathophysiology of autism. Controversy remains, however, concerning the nature and the consistency of cerebellar alterations. MRI studies of the cross-sectional area of the vermis have found both decreases and no difference in autism groups.
View Article and Find Full Text PDFPurpose: The aim of the present study was to examine the use of complementary and alternative medicine (CAM) in a sample of colorectal cancer patients in Europe.
Methods: The study was a descriptive cross-sectional survey and data were collected through a 27-item self-reported questionnaire from seven European countries.
Results: As part of a larger study, 126 colorectal cancer patients participated in this survey.
Complementary and alternative medicine (CAM) has gained popularity among cancer patients in the past years. For this study, CAM includes any group of health care systems, practices or products that are not considered to be part of conventional medicine at present (National Center for Complementary and Alternative Medicine). The present study assessed patterns of CAM use in breast cancer patients in Europe.
View Article and Find Full Text PDFThis study reports upon a descriptive cross-sectional survey assessing the use of complementary and alternative medicine (CAM) in patients with haematological cancers. Twelve European countries contributed data from patients with haematological cancers, as part of a larger study. Sixty-eight patients with haematological cancer participated.
View Article and Find Full Text PDF