-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO) to a free thiol on a target protein through a transnitrosation reaction.
View Article and Find Full Text PDFThe natural product holomycin contains a unique cyclic ene-disulfide and exhibits broad-spectrum antimicrobial activities. Reduced holomycin chelates metal ions with a high affinity and disrupts metal homeostasis in the cell. To identify cellular metalloproteins inhibited by holomycin, reactive-cysteine profiling was performed using isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP).
View Article and Find Full Text PDFReactive oxygen species (ROS) can modulate protein function through cysteine oxidation. Identifying protein targets of ROS can provide insight into uncharacterized ROS-regulated pathways. Several redox-proteomic workflows, such as oxidative isotope-coded affinity tags (OxICAT), exist to identify sites of cysteine oxidation.
View Article and Find Full Text PDFThe host cell invasion process of apicomplexan parasites like is facilitated by sequential exocytosis of the microneme, rhoptry and dense granule organelles. Exocytosis is facilitated by a double C2 domain (DOC2) protein family. This class of C2 domains is derived from an ancestral calcium (Ca) binding archetype, although this feature is optional in extant C2 domains.
View Article and Find Full Text PDFSelenoproteins contain the amino acid selenocysteine (Sec) and are found in all domains of life. The functions of many selenoproteins are poorly understood, partly due to difficulties in producing recombinant selenoproteins for cell-biological evaluation. Endogenous mammalian selenoproteins are produced through a noncanonical translation mechanism requiring suppression of the UGA stop codon and a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA.
View Article and Find Full Text PDFCysteine residues are concentrated at key functional sites within proteins, performing diverse roles in metal binding, catalysis, and redox chemistry. Chemoproteomic platforms to interrogate the reactive cysteinome have developed significantly over the past 10 years, resulting in a greater understanding of cysteine functionality, modification, and druggability. Recently, chemoproteomic methods to examine reactive cysteine residues from specific subcellular organelles have provided significantly improved proteome coverage and highlights the unique functionalities of cysteine residues mediated by cellular localization.
View Article and Find Full Text PDF