Publications by authors named "Julia A Boos"

The advancement of personalized treatments in oncology has garnered increasing attention, particularly for rare and aggressive cancer with low survival rates like the bone tumors osteosarcoma and chondrosarcoma. This study introduces a novel PDMS-agarose microfluidic device tailored for generating patient-derived tumor spheroids and serving as a reliable tool for personalized drug screening. Using this platform in tandem with a custom imaging index, we evaluated the impact of the anticancer agent doxorubicin on spheroids from both tumor types.

View Article and Find Full Text PDF

End-stage liver diseases have an increasing impact worldwide, exacerbated by the shortage of transplantable organs. Recognized as one of the promising solutions, tissue engineering aims at recreating functional tissues and organs . The integration of bioprinting technologies with biological 3D models, such as multi-cellular spheroids, has enabled the fabrication of tissue constructs that better mimic complex structures and functionality of organs.

View Article and Find Full Text PDF

Microfluidic-drop networks consist of several stable drops-interconnected through microfluidic channels-in which organ models can be cultured long-term. Drop networks feature a versatile configuration and an air-liquid interface (ALI). This ALI provides ample oxygenation, rapid liquid turnover, passive degassing, and liquid-phase stability through capillary pressure.

View Article and Find Full Text PDF

Safety assessment of the effects of developmental toxicants on pregnant women is challenging, and systemic effects in embryo-maternal interactions are largely unknown. However, most developmental toxicity studies rely on animal trials, while in vitro platforms that recapitulate the maternal-placental-embryonic axis are missing. Here, the development of a dedicated microfluidic device for co-cultivation of a placental barrier and 3D embryoid bodies to enable systemic toxicity testing at the embryo-maternal interface is reported.

View Article and Find Full Text PDF

The integration of metabolic competence in developmental toxicity assays in vitro is of fundamental importance to better predict adverse drug effects. Here, a microfluidic hanging-drop platform is presented that seamlessly integrates liver metabolism into the embryonic stem cell test (EST). Primary human liver microtissues (hLiMTs) and embryoid bodies (EBs) are combined in the same fluidic network, so that hLiMT-generated metabolites are directly transported to the EBs.

View Article and Find Full Text PDF

A monolithic multi-functional CMOS microelectrode array system was developed that enables label-free electrochemical impedance spectroscopy of cells in vitro at high spatiotemporal resolution. The electrode array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.

View Article and Find Full Text PDF